[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~代表的な半導体素子編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は、身近にあふれる半導体素子のうち、代表的なものの原理をご紹介します。

以前の記事でもざっくり取り上げましたが、すべての半導体の基本となるのは主にダイオードとトランジスタです。それらには様々な機能を付与された数多くの亜種がありますが、主なものをピックアップします。

ダイオード

(主に)p型半導体とn型半導体とを接合(pn接合)することで、一方向にしか電流を流さない整流機能を備えた素子です。

diode

ダイオードの構造

・ショットキーバリアダイオード

pn接合を利用していない異色なダイオードです。これは金属と半導体の界面(ショットキー接合)の整流作用を利用したもので、高周波用途に強みを持つほか、抵抗値が低いことも特徴です。

・発光ダイオード(LED)

電子と正孔の再結合時に、エネルギーを光として取り出せるように工夫されたものです。ノーベル賞で一躍有名になった青色発光ダイオードでもおなじみですが、照明からディスプレイまであらゆる場面で利用されています。有機物で構成したものが有機EL(OLED)です。

LED(画像:Wikipedia

・レーザーダイオード(LD)

半導体レーザーとも呼ばれているものです。キャリア再結合時の電気エネルギーを光エネルギーに変換する点はLEDと類似していますが、位相の揃ったコヒーレントな光を取り出せることが特徴です。光ファイバー用途のほか、レーザープリンター、DVDなどの光学ディスクの読み取り部などに用いられています。身近なところではマウスの光源に利用されている例もあります。

赤外線 (2-5μm)、黄色など、いくつかの波長領域では実用的な発光効率を得にくいことから開発が遅れていましたが、徐々に多くの波長領域をカバーできるようになってきています。

レーザーダイオード(画像:Wikipedia

・ツェナーダイオード

通常のダイオードでは逆方向には電流が流れませんが、ツェナーダイオードではある一定の逆電圧(ツェナー電圧)以上では電流が流れる、ツェナー効果を示すダイオードです。

これは、pn接合部位に大量の不純物をドープすることで、トンネル効果によって逆電流が流れやすくなるように設計されているためです。

なお、通常のダイオードでも、電界で加速された自由電子が中性原子に衝突して電離させ、さらに自由電子を増やすことで電気が流れるようになる、ブレークダウンとよばれる現象が起こります。空気などの絶縁体でも極めて高い電圧をかければこのような絶縁破壊が生じ、その結果私たちの目にする雷が発生します。蛇足ですが、大電圧の絶縁に使われる材料はこのような絶縁破壊を起こしにくいものである必要があり、この分野でも日本ガイシなど様々な化学メーカーが活躍しています。

・可変容量ダイオード(バリキャップ)

Pn接合に逆電圧をかけると、キャリアのほとんど存在しない空乏層が生じます。これは電気二重層の一種であるためコンデンサとしてふるまい、その静電容量は空乏層の厚さに反比例して減少します。空乏層の厚みは逆電圧の平方根に比例するので、静電容量は逆電圧の平方根に反比例して減少します。バリキャップではこの変化が有意に生じるように設計されており、発振回路などに広く利用されています。

トランジスタ

3端子を備えた素子で、電流の増幅や制御(スイッチング)の機能を持ちます。

transistor

トランジスタの構造

・電界効果型トランジスタ(FET)

2か所のpn接合で構成された普通のトランジスタは、電子と正孔の双方をキャリアとして利用していることから、バイポーラトランジスタとも呼ばれています。対するFETは、その一方しか用いないユニポーラトランジスタの一種です。FETにはゲート電極の構造から接合型、ショットキーバリア型、絶縁型の三種類がありますが、ここでは接合型について説明します。

接合型FETは図のように構造をとっており、ドレインDとソースSは一塊のp[n]型半導体に、ゲートGはそれと接合されたn[p]型半導体に接続されています。S-D間は正孔[電子]をキャリアとして通電していますが、pn接合に逆電圧をかけると空乏層が発達し、ついにはキャリアの移動が妨げられます。これにより、G電圧によってS-D間電流を制御・増幅することができます。原理はトランジスタとよく似ていますが、電流ではなく電圧に対して素子が応答する点が異なります。また、トランジスタと比べてノイズが少なく、動作が早いこと、入力抵抗が高い点などの長所を持ちます。

接合型FETの構造(図:Wikipedia

近年では有機半導体を利用した有機電界効果型トランジスタ(OFET関連の研究も一大ブームとなっており、有機半導体の応用先として有機EL(OLED)、有機薄膜太陽電池(OPV)と並んで脚光を浴びています。

・金属酸化物電界効果型トランジスタ(MOSFET)

絶縁型FETの一種で、絶縁膜として金属酸化物-半導体間の接合(Metal Oxide-Semiconductor)を用います。絶縁体の金属酸化物としては、通常SiO2が使用されています。製造が容易であることから、集積回路中の論理回路に頻繁に使われています。接合型FETと同様に入力抵抗が高く、わずかなゲート電流で動作することから消費電力の低減にも一役買っています。

MOSFETの構造(図:Wikipedia

・・・

このほかにも大電力用途で活躍するサイリスタやトライアック、IGBTなどの特殊な素子もあり、現代社会を支えています。

関連書籍

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 銀イオンクロマトグラフィー
  2. 超高速X線分光が拓く原子レベルの分子動画観測
  3. ベンゼン環が壊れた?!ー小分子を活性化するー
  4. 鉄カルベン活性種を用いるsp3 C-Hアルキル化
  5. アルデヒドを分液操作で取り除く!
  6. 「無機化学」とはなにか?
  7. ヒュッケル法(前編)~手計算で分子軌道を求めてみた~
  8. 「Natureダイジェスト」で化学の見識を広めよう!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. エイダ・ヨナス Ada E. Yonath
  2. 菅裕明 Hiroaki Suga
  3. 「科学者の科学離れ」ってなんだろう?
  4. 【大阪開催2月26日】 「化学系学生のための企業研究セミナー」
  5. 2004年ノーベル化学賞『ユビキチン―プロテアソーム系の発見』
  6. C70の中に水分子を閉じ込める
  7. 第37回反応と合成の進歩シンポジウムに参加してきました。
  8. カーボンナノチューブを有機色素で染めて使う新しい光触媒技術
  9. 化学物質研究機構、プロテオーム解析用超高感度カラム開発
  10. ヒンスバーグ チオフェン合成 Hinsberg Thiophene Synthesis

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ゼナン・バオ Zhenan Bao

ゼナン(Zhenan Bao, 1970年xx月xx日-)は、アメリカの有機材料科学者、カーボンナノ…

文具に凝るといふことを化学者もしてみむとてするなり⑭: 液タブ XP-PEN Artist 13.3 Proの巻

少し前にペンタブレット「XP-PEN Deco01」を紹介しましたが、もう少しお金をかけると液晶ペン…

定番フィルム「ベルビア100」が米国で販売中止。含まれている化学薬品が有害指定に

富士フイルムのリバーサルフィルム「フジクローム ベルビア100」が、米国で販売ストップとなりました。…

話題のAlphaFold2を使ってみた

ここ数日、構造生物学界隈で「AlphaFold2」と呼ばれているタンパク質の構造…

フェリックス・カステラーノ Felix N. Castellano

フェリックス・カステラーノ(Felix N. Castellano、19xx年x月xx日(ニューヨー…

「第22回 理工系学生科学技術論文コンクール」の応募を開始

日刊工業新聞社とモノづくり日本会議は、理工系学生(大学生・修士課程の大学院生、工業高等専門学校生)を…

みんなおなじみ DMSO が医薬品として承認!

2021年1月22日、間質性膀胱炎治療薬ジメチルスルホキシド (商品名ジムソ膀胱内注…

中山商事のWebサイトがリニューアル ~キャラクターが光る科学の総合専門商社~

中山商事株式会社のWebサイトがリニューアルされました。新サイトは、オリジナルキャラクタ達がお迎えし…

Chem-Station Twitter

PAGE TOP