[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~代表的な半導体素子編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は、身近にあふれる半導体素子のうち、代表的なものの原理をご紹介します。

以前の記事でもざっくり取り上げましたが、すべての半導体の基本となるのは主にダイオードとトランジスタです。それらには様々な機能を付与された数多くの亜種がありますが、主なものをピックアップします。

ダイオード

(主に)p型半導体とn型半導体とを接合(pn接合)することで、一方向にしか電流を流さない整流機能を備えた素子です。

diode

ダイオードの構造

・ショットキーバリアダイオード

pn接合を利用していない異色なダイオードです。これは金属と半導体の界面(ショットキー接合)の整流作用を利用したもので、高周波用途に強みを持つほか、抵抗値が低いことも特徴です。

・発光ダイオード(LED)

電子と正孔の再結合時に、エネルギーを光として取り出せるように工夫されたものです。ノーベル賞で一躍有名になった青色発光ダイオードでもおなじみですが、照明からディスプレイまであらゆる場面で利用されています。有機物で構成したものが有機EL(OLED)です。

LED(画像:Wikipedia

・レーザーダイオード(LD)

半導体レーザーとも呼ばれているものです。キャリア再結合時の電気エネルギーを光エネルギーに変換する点はLEDと類似していますが、位相の揃ったコヒーレントな光を取り出せることが特徴です。光ファイバー用途のほか、レーザープリンター、DVDなどの光学ディスクの読み取り部などに用いられています。身近なところではマウスの光源に利用されている例もあります。

赤外線 (2-5μm)、黄色など、いくつかの波長領域では実用的な発光効率を得にくいことから開発が遅れていましたが、徐々に多くの波長領域をカバーできるようになってきています。

レーザーダイオード(画像:Wikipedia

・ツェナーダイオード

通常のダイオードでは逆方向には電流が流れませんが、ツェナーダイオードではある一定の逆電圧(ツェナー電圧)以上では電流が流れる、ツェナー効果を示すダイオードです。

これは、pn接合部位に大量の不純物をドープすることで、トンネル効果によって逆電流が流れやすくなるように設計されているためです。

なお、通常のダイオードでも、電界で加速された自由電子が中性原子に衝突して電離させ、さらに自由電子を増やすことで電気が流れるようになる、ブレークダウンとよばれる現象が起こります。空気などの絶縁体でも極めて高い電圧をかければこのような絶縁破壊が生じ、その結果私たちの目にする雷が発生します。蛇足ですが、大電圧の絶縁に使われる材料はこのような絶縁破壊を起こしにくいものである必要があり、この分野でも日本ガイシなど様々な化学メーカーが活躍しています。

・可変容量ダイオード(バリキャップ)

Pn接合に逆電圧をかけると、キャリアのほとんど存在しない空乏層が生じます。これは電気二重層の一種であるためコンデンサとしてふるまい、その静電容量は空乏層の厚さに反比例して減少します。空乏層の厚みは逆電圧の平方根に比例するので、静電容量は逆電圧の平方根に反比例して減少します。バリキャップではこの変化が有意に生じるように設計されており、発振回路などに広く利用されています。

トランジスタ

3端子を備えた素子で、電流の増幅や制御(スイッチング)の機能を持ちます。

transistor

トランジスタの構造

・電界効果型トランジスタ(FET)

2か所のpn接合で構成された普通のトランジスタは、電子と正孔の双方をキャリアとして利用していることから、バイポーラトランジスタとも呼ばれています。対するFETは、その一方しか用いないユニポーラトランジスタの一種です。FETにはゲート電極の構造から接合型、ショットキーバリア型、絶縁型の三種類がありますが、ここでは接合型について説明します。

接合型FETは図のように構造をとっており、ドレインDとソースSは一塊のp[n]型半導体に、ゲートGはそれと接合されたn[p]型半導体に接続されています。S-D間は正孔[電子]をキャリアとして通電していますが、pn接合に逆電圧をかけると空乏層が発達し、ついにはキャリアの移動が妨げられます。これにより、G電圧によってS-D間電流を制御・増幅することができます。原理はトランジスタとよく似ていますが、電流ではなく電圧に対して素子が応答する点が異なります。また、トランジスタと比べてノイズが少なく、動作が早いこと、入力抵抗が高い点などの長所を持ちます。

接合型FETの構造(図:Wikipedia

近年では有機半導体を利用した有機電界効果型トランジスタ(OFET関連の研究も一大ブームとなっており、有機半導体の応用先として有機EL(OLED)、有機薄膜太陽電池(OPV)と並んで脚光を浴びています。

・金属酸化物電界効果型トランジスタ(MOSFET)

絶縁型FETの一種で、絶縁膜として金属酸化物-半導体間の接合(Metal Oxide-Semiconductor)を用います。絶縁体の金属酸化物としては、通常SiO2が使用されています。製造が容易であることから、集積回路中の論理回路に頻繁に使われています。接合型FETと同様に入力抵抗が高く、わずかなゲート電流で動作することから消費電力の低減にも一役買っています。

MOSFETの構造(図:Wikipedia

・・・

このほかにも大電力用途で活躍するサイリスタやトライアック、IGBTなどの特殊な素子もあり、現代社会を支えています。

関連書籍

[amazonjs asin=”B00GHHXLXI” locale=”JP” title=”図解・わかる電子回路 : 基礎からDOS/V活用まで (ブルーバックス)”] [amazonjs asin=”4798027979″ locale=”JP” title=”わかる!電子工作の基本100″] [amazonjs asin=”4774130788″ locale=”JP” title=”作る・できる/基礎入門 電子工作の素”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 合成手法に焦点を当てて全合成研究を見る「テトロドトキシン~その1…
  2. 「タキソールのTwo phase synthesis」ースクリプ…
  3. ペロブスカイト太陽電池が直面する現実
  4. 【産総研・触媒化学研究部門】新卒・既卒採用情報
  5. 研究室での英語【Part 2】
  6. 新たなクリックケミストリーを拓く”SuFEx反応&#…
  7. オルガネラ選択的な薬物送達法:①細胞膜・核・ミトコンドリアへの送…
  8. 有機合成化学協会誌2023年9月号:大村天然物・ストロファステロ…

注目情報

ピックアップ記事

  1. 多環式分子を一挙に合成!新たなo-キノジメタン生成法の開発
  2. レスベラトロール /resveratrol
  3. リチウムイオン電池正極材料の開発動向
  4. 創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO”選抜プログラムへの参加チーム募集中!
  5. 抗体ペアが抗原分子上に反応場をつくり出す―2つの抗体エピトープを利用したテンプレート反応の開発―
  6. ダニエル・ノセラ Daniel G. Nocera
  7. ノーコードでM5Stack室内環境モニターを作ろう
  8. MT-スルホン MT-Sulfone
  9. 吉野彰氏が2021年10月度「私の履歴書」を連載。
  10. 日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

もう一歩先へ進みたい人の化学でつかえる線形代数

概要化学分野の諸問題に潜む線形代数の要素を,化学専攻の目線から解体・解説する。(引用:コロナ…

ノーベル賞受賞者と語り合う5日間!「第17回HOPEミーティング」参加者募集!

今年もHOPEミーティングの参加者募集の時期がやって来ました。HOPEミーティングは、博士課…

熱前駆体法を利用した水素結合性有機薄膜の作製とトランジスタへの応用

第664回のスポットライトリサーチは、京都大学大学院理学研究科(化学研究所・山田研究室)博士後期課程…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP