[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~代表的な半導体素子編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は、身近にあふれる半導体素子のうち、代表的なものの原理をご紹介します。

以前の記事でもざっくり取り上げましたが、すべての半導体の基本となるのは主にダイオードとトランジスタです。それらには様々な機能を付与された数多くの亜種がありますが、主なものをピックアップします。

ダイオード

(主に)p型半導体とn型半導体とを接合(pn接合)することで、一方向にしか電流を流さない整流機能を備えた素子です。

diode

ダイオードの構造

・ショットキーバリアダイオード

pn接合を利用していない異色なダイオードです。これは金属と半導体の界面(ショットキー接合)の整流作用を利用したもので、高周波用途に強みを持つほか、抵抗値が低いことも特徴です。

・発光ダイオード(LED)

電子と正孔の再結合時に、エネルギーを光として取り出せるように工夫されたものです。ノーベル賞で一躍有名になった青色発光ダイオードでもおなじみですが、照明からディスプレイまであらゆる場面で利用されています。有機物で構成したものが有機EL(OLED)です。

LED(画像:Wikipedia

・レーザーダイオード(LD)

半導体レーザーとも呼ばれているものです。キャリア再結合時の電気エネルギーを光エネルギーに変換する点はLEDと類似していますが、位相の揃ったコヒーレントな光を取り出せることが特徴です。光ファイバー用途のほか、レーザープリンター、DVDなどの光学ディスクの読み取り部などに用いられています。身近なところではマウスの光源に利用されている例もあります。

赤外線 (2-5μm)、黄色など、いくつかの波長領域では実用的な発光効率を得にくいことから開発が遅れていましたが、徐々に多くの波長領域をカバーできるようになってきています。

レーザーダイオード(画像:Wikipedia

・ツェナーダイオード

通常のダイオードでは逆方向には電流が流れませんが、ツェナーダイオードではある一定の逆電圧(ツェナー電圧)以上では電流が流れる、ツェナー効果を示すダイオードです。

これは、pn接合部位に大量の不純物をドープすることで、トンネル効果によって逆電流が流れやすくなるように設計されているためです。

なお、通常のダイオードでも、電界で加速された自由電子が中性原子に衝突して電離させ、さらに自由電子を増やすことで電気が流れるようになる、ブレークダウンとよばれる現象が起こります。空気などの絶縁体でも極めて高い電圧をかければこのような絶縁破壊が生じ、その結果私たちの目にする雷が発生します。蛇足ですが、大電圧の絶縁に使われる材料はこのような絶縁破壊を起こしにくいものである必要があり、この分野でも日本ガイシなど様々な化学メーカーが活躍しています。

・可変容量ダイオード(バリキャップ)

Pn接合に逆電圧をかけると、キャリアのほとんど存在しない空乏層が生じます。これは電気二重層の一種であるためコンデンサとしてふるまい、その静電容量は空乏層の厚さに反比例して減少します。空乏層の厚みは逆電圧の平方根に比例するので、静電容量は逆電圧の平方根に反比例して減少します。バリキャップではこの変化が有意に生じるように設計されており、発振回路などに広く利用されています。

トランジスタ

3端子を備えた素子で、電流の増幅や制御(スイッチング)の機能を持ちます。

transistor

トランジスタの構造

・電界効果型トランジスタ(FET)

2か所のpn接合で構成された普通のトランジスタは、電子と正孔の双方をキャリアとして利用していることから、バイポーラトランジスタとも呼ばれています。対するFETは、その一方しか用いないユニポーラトランジスタの一種です。FETにはゲート電極の構造から接合型、ショットキーバリア型、絶縁型の三種類がありますが、ここでは接合型について説明します。

接合型FETは図のように構造をとっており、ドレインDとソースSは一塊のp[n]型半導体に、ゲートGはそれと接合されたn[p]型半導体に接続されています。S-D間は正孔[電子]をキャリアとして通電していますが、pn接合に逆電圧をかけると空乏層が発達し、ついにはキャリアの移動が妨げられます。これにより、G電圧によってS-D間電流を制御・増幅することができます。原理はトランジスタとよく似ていますが、電流ではなく電圧に対して素子が応答する点が異なります。また、トランジスタと比べてノイズが少なく、動作が早いこと、入力抵抗が高い点などの長所を持ちます。

接合型FETの構造(図:Wikipedia

近年では有機半導体を利用した有機電界効果型トランジスタ(OFET関連の研究も一大ブームとなっており、有機半導体の応用先として有機EL(OLED)、有機薄膜太陽電池(OPV)と並んで脚光を浴びています。

・金属酸化物電界効果型トランジスタ(MOSFET)

絶縁型FETの一種で、絶縁膜として金属酸化物-半導体間の接合(Metal Oxide-Semiconductor)を用います。絶縁体の金属酸化物としては、通常SiO2が使用されています。製造が容易であることから、集積回路中の論理回路に頻繁に使われています。接合型FETと同様に入力抵抗が高く、わずかなゲート電流で動作することから消費電力の低減にも一役買っています。

MOSFETの構造(図:Wikipedia

・・・

このほかにも大電力用途で活躍するサイリスタやトライアック、IGBTなどの特殊な素子もあり、現代社会を支えています。

関連書籍

[amazonjs asin=”B00GHHXLXI” locale=”JP” title=”図解・わかる電子回路 : 基礎からDOS/V活用まで (ブルーバックス)”] [amazonjs asin=”4798027979″ locale=”JP” title=”わかる!電子工作の基本100″] [amazonjs asin=”4774130788″ locale=”JP” title=”作る・できる/基礎入門 電子工作の素”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくあ…
  2. 有機合成化学協会誌2021年8月号:ナノチューブカプセル・ナノグ…
  3. ヒドロキシ基をスパッと(S)、カット(C)、して(S)、アルキル…
  4. 有機色素の自己集合を利用したナノ粒子の配列
  5. ケイ素半導体加工に使えるイガイな接着剤
  6. 一流科学者たちの経済的出自とその考察
  7. 有機合成化学協会誌2025年12月号:ホウ素二置換カルベン・不斉…
  8. 温故知新ケミストリー:シクロプロペニルカチオンを活用した有機合成…

注目情報

ピックアップ記事

  1. ゴム状硫黄は何色?
  2. ペンタシクロアナモキシ酸 pentacycloanamoxic acid
  3. 2016年JACS Most Read Articles Top10を眺める
  4. プロペンを用いたpiericidin Aの収束的短工程合成
  5. TriBOT ~1分子が3倍活躍するベンジル化試薬~
  6. マクロロタキサン~巨大なリングでロタキサンを作る~
  7. ポリマーを進化させる!機能性モノマーの力
  8. 世界初 もみ殻からLEDを開発!~オレンジ色に発光するシリコン量子ドットLED~
  9. 抗菌目薬あす発売 富山化学工業 国内初の小児適用
  10. 金属カルベノイドのC-H挿入反応 C-H Insertion of Metal Carbenoid

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP