[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~代表的な半導体素子編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は、身近にあふれる半導体素子のうち、代表的なものの原理をご紹介します。

以前の記事でもざっくり取り上げましたが、すべての半導体の基本となるのは主にダイオードとトランジスタです。それらには様々な機能を付与された数多くの亜種がありますが、主なものをピックアップします。

ダイオード

(主に)p型半導体とn型半導体とを接合(pn接合)することで、一方向にしか電流を流さない整流機能を備えた素子です。

diode

ダイオードの構造

・ショットキーバリアダイオード

pn接合を利用していない異色なダイオードです。これは金属と半導体の界面(ショットキー接合)の整流作用を利用したもので、高周波用途に強みを持つほか、抵抗値が低いことも特徴です。

・発光ダイオード(LED)

電子と正孔の再結合時に、エネルギーを光として取り出せるように工夫されたものです。ノーベル賞で一躍有名になった青色発光ダイオードでもおなじみですが、照明からディスプレイまであらゆる場面で利用されています。有機物で構成したものが有機EL(OLED)です。

LED(画像:Wikipedia

・レーザーダイオード(LD)

半導体レーザーとも呼ばれているものです。キャリア再結合時の電気エネルギーを光エネルギーに変換する点はLEDと類似していますが、位相の揃ったコヒーレントな光を取り出せることが特徴です。光ファイバー用途のほか、レーザープリンター、DVDなどの光学ディスクの読み取り部などに用いられています。身近なところではマウスの光源に利用されている例もあります。

赤外線 (2-5μm)、黄色など、いくつかの波長領域では実用的な発光効率を得にくいことから開発が遅れていましたが、徐々に多くの波長領域をカバーできるようになってきています。

レーザーダイオード(画像:Wikipedia

・ツェナーダイオード

通常のダイオードでは逆方向には電流が流れませんが、ツェナーダイオードではある一定の逆電圧(ツェナー電圧)以上では電流が流れる、ツェナー効果を示すダイオードです。

これは、pn接合部位に大量の不純物をドープすることで、トンネル効果によって逆電流が流れやすくなるように設計されているためです。

なお、通常のダイオードでも、電界で加速された自由電子が中性原子に衝突して電離させ、さらに自由電子を増やすことで電気が流れるようになる、ブレークダウンとよばれる現象が起こります。空気などの絶縁体でも極めて高い電圧をかければこのような絶縁破壊が生じ、その結果私たちの目にする雷が発生します。蛇足ですが、大電圧の絶縁に使われる材料はこのような絶縁破壊を起こしにくいものである必要があり、この分野でも日本ガイシなど様々な化学メーカーが活躍しています。

・可変容量ダイオード(バリキャップ)

Pn接合に逆電圧をかけると、キャリアのほとんど存在しない空乏層が生じます。これは電気二重層の一種であるためコンデンサとしてふるまい、その静電容量は空乏層の厚さに反比例して減少します。空乏層の厚みは逆電圧の平方根に比例するので、静電容量は逆電圧の平方根に反比例して減少します。バリキャップではこの変化が有意に生じるように設計されており、発振回路などに広く利用されています。

トランジスタ

3端子を備えた素子で、電流の増幅や制御(スイッチング)の機能を持ちます。

transistor

トランジスタの構造

・電界効果型トランジスタ(FET)

2か所のpn接合で構成された普通のトランジスタは、電子と正孔の双方をキャリアとして利用していることから、バイポーラトランジスタとも呼ばれています。対するFETは、その一方しか用いないユニポーラトランジスタの一種です。FETにはゲート電極の構造から接合型、ショットキーバリア型、絶縁型の三種類がありますが、ここでは接合型について説明します。

接合型FETは図のように構造をとっており、ドレインDとソースSは一塊のp[n]型半導体に、ゲートGはそれと接合されたn[p]型半導体に接続されています。S-D間は正孔[電子]をキャリアとして通電していますが、pn接合に逆電圧をかけると空乏層が発達し、ついにはキャリアの移動が妨げられます。これにより、G電圧によってS-D間電流を制御・増幅することができます。原理はトランジスタとよく似ていますが、電流ではなく電圧に対して素子が応答する点が異なります。また、トランジスタと比べてノイズが少なく、動作が早いこと、入力抵抗が高い点などの長所を持ちます。

接合型FETの構造(図:Wikipedia

近年では有機半導体を利用した有機電界効果型トランジスタ(OFET関連の研究も一大ブームとなっており、有機半導体の応用先として有機EL(OLED)、有機薄膜太陽電池(OPV)と並んで脚光を浴びています。

・金属酸化物電界効果型トランジスタ(MOSFET)

絶縁型FETの一種で、絶縁膜として金属酸化物-半導体間の接合(Metal Oxide-Semiconductor)を用います。絶縁体の金属酸化物としては、通常SiO2が使用されています。製造が容易であることから、集積回路中の論理回路に頻繁に使われています。接合型FETと同様に入力抵抗が高く、わずかなゲート電流で動作することから消費電力の低減にも一役買っています。

MOSFETの構造(図:Wikipedia

・・・

このほかにも大電力用途で活躍するサイリスタやトライアック、IGBTなどの特殊な素子もあり、現代社会を支えています。

関連書籍

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 機械的力で Cu(I) 錯体の発光強度を制御する
  2. 第27回 国際複素環化学会議 (27th ISHC)
  3. Communications Chemistry創刊!:ネイチャ…
  4. 関東化学2019年採用情報
  5. 直接クプラート化によるフルオロアルキル銅錯体の形成と応用
  6. 米国へ講演旅行へ行ってきました:Part IV
  7. 量子化学計算を駆使した不斉ホスフィン配位子設計から導かれる新たな…
  8. Open Babel を使ってみよう~ケモインフォマティクス入門…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第26回「分子集合体の極限に迫る」矢貝史樹准教授
  2. 2005年6月分の気になる化学関連ニュース投票結果
  3. チャン・ラム・エヴァンス カップリング Chan-Lam-Evans Coupling
  4. ホーナー・ワズワース・エモンス反応 Horner-Wadsworth-Emmons (HWE) Reaction
  5. シンプルなα,β-不飽和カルベン種を生成するレニウム触媒系
  6. パターノ・ビューチ反応 Paterno-Buchi Reaction
  7. アラン・マクダイアミッド氏死去
  8. 静岡大准教授が麻薬所持容疑で逮捕
  9. オリーブ油の苦み成分に鎮痛薬に似た薬理作用
  10. ロバート・バーンズ・ウッドワード Robert Burns Woodward

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

三井化学岩国大竹工場の設備が未来技術遺産に登録

三井化学はこのほど、岩国大竹工場(山口県和木町)にあるポリエチレン製造装置が、国立科学博物館により、…

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を…

gem-ジフルオロアルケンの新奇合成法

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ…

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-

「ケミカルマテリアルJapan2020-ONLINEー(主催:株式会社化学工業日報社)」は、未来に向…

Chem-Station Twitter

PAGE TOP