[スポンサーリンク]

スポットライトリサーチ

ウレタンを選択的に分解する触媒の開発―カルボニル基を保持してウレタンからホルムアミドとアルコールへ分解ー

[スポンサーリンク]

第624回のスポットライトリサーチは、東京大学大学院工学系研究科(野崎研究室)修士1年の山田 悠斗さんにお願いしました。

今回ご紹介するのは、ウレタンの化学選択的水素化分解に関する研究です。Ir触媒を用いたウレタンからのホルムアミドとアルコールへの化学選択的水素化分解を報告されました。一般的なカルボニル基の求電子性と異なり、より反応性が高いアミドやエステルの存在下でもウレタンを選択的に水素化分解することを明らかにされています。また開発された触媒を用いて、汎用のポリウレタンフォームの水素化分解も実現されています。本研究は、J. Am. Chem. Soc. 誌 原著論文およびプレスリリースに公開されており、J. Am. Chem. Soc. 誌 Supplementary coverにも選ばれています。

Chemoselective Hydrogenolysis of Urethanes to Formamides and Alcohols in the Presence of More Electrophilic Carbonyl Compounds
Iwasaki, T.; Yamada, Y.; Naito, N.; Nozaki, K. J. Am. Chem. Soc., 2024, in press. DOI: 10.1021/jacs.4c06553

研究を指導された岩﨑孝紀 准教授野崎京子 教授から、山田さんについて以下のコメントを頂いています。それでは今回もインタビューをお楽しみください!

岩﨑孝紀 准教授より

今回山田君が開発してくれたウレタンのホルムアミドとアルコールへの選択的水素化分解反応は、以前に報告したウレアの水素化分解[Nat. Commun. 2024]の大きな宿題の一つでした。

今回用いたイリジウム触媒に関連する研究としてカルボニル化合物の中で最も求電子性が低いとされるウレアのホルムアミドとアミンへの水素化分解とそれを利用したポリウレアの分解を行っていました。その中で、ウレアは水素化分解を受けるのに対してウレタンは全く水素化分解を受けないことを見出していました。NEDOの研究費の関係で研究成果を企業に紹介する機会が多くあったのですが、決まって「ウレアではなくてウレタンは切れませんか?」と質問されていました。生産量から考えるとポリウレタンのリサイクルに興味を持つ人が多いのは当然ですね。余談になりますが、ポリウレタンフォームと呼ばれているものはかなりの量のウレア結合を含んでいることをウレタンの水素化分解に取り組んでから知りました。

いずれにせよウレタンの水素化分解とそれをポリウレタンに応用するという明確な目標ができたタイミングで山田君が卒研生として配属され、この目標に取り組んでくれることになりました。共著者で1学年上の内藤君が学部卒業から留学までの3ヶ月ほどの間しっかりと実験テクニックを山田君に継承してくれたこともあって、院試前にはウレタンも分解できることを示してくれたことには感動しました。

院試明けから添加剤の効果(CsOt-Buの合成は金属セシウムを使わない安全な方法で合成しました)を明らかにして最適条件に辿り着いた後は、山田君の持ち前の圧倒的な実験スピードで基質展開、他のカルボニル化合物との化学選択性、ポリウレタンの分解まで一気に実験を進めてくれました。院試休みを除けば実質1年で論文投稿までこぎつけたのは山田君の努力の賜物だと思います。

Amazonで買ったポリウレタンやポリウレタンと他のポリマーの複合材料(簡単に言えば食器洗い用のスポンジです)が山田君のデスクに積まれていますが、これらも早晩分解してくれることと期待しています。

野崎京子 教授より

ポリウレタン原料の世界市場は新興国を中心に住宅や家具、衣類向けなどの用途の増加が見込まれ、2027年には2021年比24.9%増の2,899万トンが予測されています(富士経済プレスリリース第22088号より転載https://www.fuji-keizai.co.jp/press/detail.html?cid=22088&view_type=2&la=ja)。ケミカルリサイクルは喫緊の課題であり、加水分解によりジアミンとポリオールに分解する手法が多く検討されていますが、今回はアミンではなくホルムアミドで回収できたことが特徴です。ホルミル基は再重合に活かせる可能性があります。

岩﨑グループでウレアの加水素分解を初めて達成した柘植さん、そのあと触媒の改良に取り組んだ内藤さんら卒業生のあとを引き継いだ山田さんは、持ち前のセンスの良さを最大限に発揮して、ついにこのプロジェクトのラスボスを仕留めました。サイエンスから応用まで広い視点で研究を進められるのが彼の魅力です。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

イリジウム触媒により、水素分子を用いてウレタンを選択的にホルムアミドとアルコールへ分解できることを明らかにしました。従来のウレタンの水素化分解ではアミン、メタノール、アルコールが得られるのに対し、本研究では一般的な化学選択性を触媒により覆し、ウレタンよりも反応性が高いとされているホルムアミドが生成物として得られる点が従来の例と対照的です。さらに、ウレタン結合は一般にエステルやアミドよりも反応しにくいことが知られていますが、本水素化分解ではエステルやアミドなどが混在してもウレタンを選択的に分解します。

さらに、本水素化分解はポリウレタンの分解へも応用が可能です。ポリウレタンはスポンジのような身の回りの物質から建築用断熱材にまで幅広く用いられている高分子材料ですが、ウレタン結合の安定性からそのケミカルリサイクルが困難だとされてきました。そうした背景の元、ポリウレタンのモデル分子に対して本触媒による水素化分解を試みたところ、ジホルムアミドとジオールが分解生成物として得られました。本研究は、ポリウレタンをジホルムアミドとジオールへ水素化分解した初めての例であり、これらの脱水素カップリング[1]と組み合わせると、ポリウレタンの水素分子の移動のみによるケミカルリサイクルへ応用できることが期待されます。さらに、本触媒を用いて、汎用ポリウレタンフォームの水素化分解も達成しました。そのため、ポリウレタンの新たなケミカルリサイクル手法としての工業的な応用が期待されます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

一般的なカルボニル化合物の化学選択性の逆転という科学的な側面と、ポリウレタンのケミカルリサイクルへの応用という工業的な側面の両方の点から俯瞰して研究を進めることができたことに面白さを感じています。解析にかなり苦労しましたが、実際のポリウレタンにもみられるような分子内にエステルを含むポリウレタンを反応させた際にエステルが損なわれずに分解できたことや、溶媒に浸していても溶けることがなかった汎用ポリウレタンフォームの分解の進行を実際に確認したときは、触媒の力の凄さを実感しました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

反応条件の最適化にはしばらくの時間を費やしました。ウレア水素化の触媒として研究室の先輩により開発された錯体と、CsOt-Buを用いた条件により、条件の最適化に成功しました。危険を伴いそうで自力での合成が困難だったCsOt-Buについて、岩﨑准教授に合成していただき、それを用いて高い活性を実現できたことは感慨深いです。また、イリジウム錯体を開発し、ウレアの水素化分解を発表した[2]研究室の先輩である柘植さん、内藤さんには感謝の気持ちでいっぱいです。

反応機構の具体的な解明には未だ苦戦しており、今後、反応機構の解明に向けてさらに取り組んでいきたいと思っています。

Q4. 将来は化学とどう関わっていきたいですか?

ポリウレタンのリサイクルという社会の課題に挑む研究の経験を通じて、化学の力で持続可能な社会の実現に貢献できることを感じ、このような研究の面白さを実感したので、今後も有機化学を用いて社会課題の解決に携われるような研究を行いたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

ここまで読んでいただきありがとうございました。ここには書ききれなかった内容もあるので興味を持っていただければ是非論文にも目を通していただけると幸いです。

最後に、本研究を遂行するにあたり野崎京子教授、岩﨑孝紀准教授をはじめ、多くの方々のご指導とご助力を賜わりました。この場を借りて御礼申し上げます。

研究者の略歴

名前:山田 悠斗やまだ ゆうと
所属:東京大学工学系研究科化学生命工学専攻 野崎研究室 修士1年
略歴:
2024年3月 東京大学工学部化学生命工学科 卒業
2024年4月〜現在 東京大学大学院工学系研究科化学生命工学専攻 在学

関連文献

  1. Futter, J.; Rieger, B. From CO2 to Polyurethanes: Catalytic Dehydrogenative Coupling of Diols and Diformamides as Isocyanate Surrogates. In Book of Abstracts; ACS Spring, 2024: New Orleans, LA; Paper M10.
  2. Iwasaki, T.; Tsuge, K.; Naito, N.; Nozaki, K. Chemoselectivity Change in Catalytic Hydrogenolysis Enabling Urea-Reduction to Formamide/Amine over More Reactive Carbonyl Compounds. Nat. Commun. 2023, 14, 3279. DOI: 10.1038/s41467-023-38997-2

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  2. ゴジラ級のエルニーニョに…出会った!
  3. 触媒なの? ?自殺する酵素?
  4. ハニートラップに対抗する薬が発見される?
  5. クロム光レドックス触媒を有機合成へ応用する
  6. 光照射による有機酸/塩基の発生法:②光塩基発生剤について
  7. リモートワークで結果を出す人、出せない人
  8. タンパク質の定量法―ビューレット法 Protein Quanti…

注目情報

ピックアップ記事

  1. ナノ粒子の安全性、リスク評価と国際標準化の最新動向【終了】
  2. ムスカリン muscarine
  3. 【第一回】シード/リード化合物の創出に向けて 1/2
  4. 「ラブ・ケミストリー」の著者にインタビューしました。
  5. ケムステ版・ノーベル化学賞候補者リスト【2016年版】
  6. 電気刺激により電子伝導性と白色発光を発現するヨウ素内包カーボンナノリング
  7. 第123回―「遺伝暗号を拡張して新しいタンパク質を作る」Nick Fisk教授
  8. 位置選択性の制御が可能なスチレンのヒドロアリール化
  9. 杉安和憲 SUGIYASU Kazunori
  10. シグマトロピー転位によるキラルα-アリールカルボニルの合成法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

ケムステ版・ノーベル化学賞候補者リスト【2024年版】

今年もノーベル賞シーズンが近づいてきました!各媒体からかき集めた情報を元に、「未…

有機合成化学協会誌2024年9月号:ホウ素媒介アグリコン転移反応・有機電解合成・ヘキサヒドロインダン骨格・MHAT/RPC機構・CDC反応

有機合成化学協会が発行する有機合成化学協会誌、2024年9月号がオンライン公開されています。…

初歩から学ぶ無機化学

概要本書は,高等学校で学ぶ化学の一歩先を扱っています。読者の皆様には,工学部や理学部,医学部…

理研の研究者が考える“実験ロボット”の未来とは?

bergです。昨今、人工知能(AI)が社会を賑わせており、関連のトピックスを耳にしない日はないといっ…

【9月開催】 【第二期 マツモトファインケミカル技術セミナー開催】有機金属化合物 オルガチックスを用いたゾルゲル法とプロセス制御ノウハウ①

セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチック…

2024年度 第24回グリーン・サステイナブル ケミストリー賞 候補業績 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブル ケミストリー ネットワーク会議(略称: …

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

開催日時 2024.09.11 15:00-16:00 申込みはこちら開催概要持続可能な…

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP