[スポンサーリンク]

一般的な話題

光と励起子が混ざった準粒子 励起子ポラリトン

[スポンサーリンク]

励起子とは

半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠陥がプラスの電荷を持ち、準粒子として扱うことができる。この準粒子を正孔またはホールと呼ぶ。正孔は伝導帯の電子とクーロン力で結びつき、一定の距離を保ったまま物質内を動き回る。そのため、この電子-正孔のペアは一つの粒子としてみなすことができる。この粒子を励起子と呼ぶ。励起子には2つの種類があり、電子-正孔の半径が10-100Å程度の結晶中に広がるほど大きなものをモット-ワニエ(Mott-Wannier)励起子、半径が1-10Å程度の分子内に収まるような小さな励起子をフレンケル(Frenkel)励起子と呼ぶ(図1)。Mott-Wannier励起子は主に無機半導体中の励起子を表しており、Frenkel励起子は主に分子性結晶中での電子励起状態を表していると考えることができる。

図1. Mott-Wannier励起子とFrenkel励起子

励起子ポラリトン Exciton-polariton

励起子ポラリトンとは、光のエネルギー状態と励起子のエネルギー状態が結合した結果生じる準粒子である。光は波動方程式によって波として記述することができる。また、ド・ブロイ波の概念より、励起子も波として記述することができる。波は重ね合わせることが可能となるため、この重ね合わさった状態を、励起子ポラリトンという新たな物質の状態としてとらえることができる。励起子ポラリトンが形成されると、光のエネルギー準位と励起子のエネルギー準位が結合し、エネルギーが分子軌道のように2つの状態に分裂する(図2)。エネルギーが高いものをアッパーポラリトン(Upper Polariton, UP)、低いものをロウワーポラリトン(Lower Polariton, LP)と呼び、両者のエネルギー差()をラビ分裂(Rabi splitting)と呼ぶ。この現象により、本来の物質が持つ準位構造を変化させることができる。

図2. 励起子ポラリトンのエネルギー準位図

励起子ポラリトンの発生

2枚のミラーを向かい合わせにしたキャビティ(共振器とも呼ぶ)構造を用いると、光を閉じ込めることができる。このときミラーの距離を入射光の波長の整数倍/2の長さにすることで、光が何度も往復して干渉し、定在波となる (図3)。このキャビティに閉じ込められた光子をキャビティ光子と呼び、離散的なエネルギー準位が形成される。

図3. 定在波ができる過程

キャビティの中に発光効率の良い半導体などを入れ、光を入射することで電子が励起され、正孔と結びついて励起子を形成する。この励起子の吸収ピークと定在波のピーク(キャビティモードと呼ぶ)が一致するようにキャビティの幅を調整することで、励起子がエネルギーを光子として放出した瞬間に定在波によって再度励起されるという現象が発生する。また、半導体から放出された光子はキャビティ内を往復するため、放出された光子が再度半導体に吸収される。この状況は、光と励起子の間でエネルギーが共有されているとみなせる。この状態を強結合状態と呼び、生成される混成状態を励起子ポラリトンという準粒子として扱う。

 

励起子ポラリトンの性質と応用

励起子ポラリトン状態では、物質と光の状態が混ざったような物性を確認することができる。具体的には、物質由来のスピンの情報をもちあわせた偏光を示す一方、光由来の超高速かつ超軽量な性質を持つ。また、分子間のエネルギーの授受において、エネルギーを受容する分子をポラリトン状態にし、エネルギーを供与する分子のエネルギーに近い準位を新たに形成することで、分子間の軌道の相互作用が大きくなり、高効率なエネルギー輸送ができるとされている。この現象を用いることで、高効率なエネルギー変換を叶える太陽電池の開発などに応用できるのではないかとの期待が高まっている。

 

参考文献

Skolnick, M. S.; Fisher, T. A.; Whittaker, D. M., Semicond. Sci.Technol. 1998, 13, 645-669. DOI 10.1088/0268-1242/13/7/003

 

関連書籍

半導体の光物性

半導体の光物性

中山 正昭
¥5,500(as of 01/28 04:13)
Amazon product information
光物性入門

光物性入門

小林 浩一
¥3,520(as of 01/28 04:13)
Amazon product information

 

 

植木 穂香

投稿者の記事一覧

奈良先端大のD1です。ポラリトンについて研究しています。

関連記事

  1. ワンクリックで分解プロセスの見える化!
  2. 3Mとはどんな会社? 2021年版
  3. 材料開発を効率化する、マテリアルズ・インフォマティクス人材活用の…
  4. イスラエルの化学ってどうよ?
  5. 第21回次世代を担う有機化学シンポジウム
  6. Dead Endを回避せよ!「全合成・極限からの一手」②
  7. 超分子化学と機能性材料に関する国際シンポジウム2016
  8. プロペランの真ん中

注目情報

ピックアップ記事

  1. 脱水素型クロスカップリング重合法の開発
  2. 分子積み木による新規ゼオライト合成に成功、産総研
  3. ベンゼン環を壊す“アレノフィル”
  4. リチウムイオン電池製造の勘どころ【終了】
  5. サノフィ・アベンティスグループ、「タキソテール」による進行乳癌の生存期間改善効果を発表
  6. ベンゼン環が速く・キレイに描けるルーズリーフ
  7. ソープ・インゴールド効果 Thorpe-Ingold Effect
  8. Reaxys Ph.D Prize2014ファイナリスト45名発表!
  9. 2016年ケムステ人気記事ランキング
  10. ジョージ・クラフォード M. George Craford

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

四国化成ってどんな会社?

私たち四国化成ホールディングス株式会社は、企業理念「独創力」を掲げ、「有機合成技術」…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP