[スポンサーリンク]

一般的な話題

光と励起子が混ざった準粒子 励起子ポラリトン

[スポンサーリンク]

励起子とは

半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠陥がプラスの電荷を持ち、準粒子として扱うことができる。この準粒子を正孔またはホールと呼ぶ。正孔は伝導帯の電子とクーロン力で結びつき、一定の距離を保ったまま物質内を動き回る。そのため、この電子-正孔のペアは一つの粒子としてみなすことができる。この粒子を励起子と呼ぶ。励起子には2つの種類があり、電子-正孔の半径が10-100Å程度の結晶中に広がるほど大きなものをモット-ワニエ(Mott-Wannier)励起子、半径が1-10Å程度の分子内に収まるような小さな励起子をフレンケル(Frenkel)励起子と呼ぶ(図1)。Mott-Wannier励起子は主に無機半導体中の励起子を表しており、Frenkel励起子は主に分子性結晶中での電子励起状態を表していると考えることができる。

図1. Mott-Wannier励起子とFrenkel励起子

励起子ポラリトン Exciton-polariton

励起子ポラリトンとは、光のエネルギー状態と励起子のエネルギー状態が結合した結果生じる準粒子である。光は波動方程式によって波として記述することができる。また、ド・ブロイ波の概念より、励起子も波として記述することができる。波は重ね合わせることが可能となるため、この重ね合わさった状態を、励起子ポラリトンという新たな物質の状態としてとらえることができる。励起子ポラリトンが形成されると、光のエネルギー準位と励起子のエネルギー準位が結合し、エネルギーが分子軌道のように2つの状態に分裂する(図2)。エネルギーが高いものをアッパーポラリトン(Upper Polariton, UP)、低いものをロウワーポラリトン(Lower Polariton, LP)と呼び、両者のエネルギー差()をラビ分裂(Rabi splitting)と呼ぶ。この現象により、本来の物質が持つ準位構造を変化させることができる。

図2. 励起子ポラリトンのエネルギー準位図

励起子ポラリトンの発生

2枚のミラーを向かい合わせにしたキャビティ(共振器とも呼ぶ)構造を用いると、光を閉じ込めることができる。このときミラーの距離を入射光の波長の整数倍/2の長さにすることで、光が何度も往復して干渉し、定在波となる (図3)。このキャビティに閉じ込められた光子をキャビティ光子と呼び、離散的なエネルギー準位が形成される。

図3. 定在波ができる過程

キャビティの中に発光効率の良い半導体などを入れ、光を入射することで電子が励起され、正孔と結びついて励起子を形成する。この励起子の吸収ピークと定在波のピーク(キャビティモードと呼ぶ)が一致するようにキャビティの幅を調整することで、励起子がエネルギーを光子として放出した瞬間に定在波によって再度励起されるという現象が発生する。また、半導体から放出された光子はキャビティ内を往復するため、放出された光子が再度半導体に吸収される。この状況は、光と励起子の間でエネルギーが共有されているとみなせる。この状態を強結合状態と呼び、生成される混成状態を励起子ポラリトンという準粒子として扱う。

 

励起子ポラリトンの性質と応用

励起子ポラリトン状態では、物質と光の状態が混ざったような物性を確認することができる。具体的には、物質由来のスピンの情報をもちあわせた偏光を示す一方、光由来の超高速かつ超軽量な性質を持つ。また、分子間のエネルギーの授受において、エネルギーを受容する分子をポラリトン状態にし、エネルギーを供与する分子のエネルギーに近い準位を新たに形成することで、分子間の軌道の相互作用が大きくなり、高効率なエネルギー輸送ができるとされている。この現象を用いることで、高効率なエネルギー変換を叶える太陽電池の開発などに応用できるのではないかとの期待が高まっている。

 

参考文献

Skolnick, M. S.; Fisher, T. A.; Whittaker, D. M., Semicond. Sci.Technol. 1998, 13, 645-669. DOI 10.1088/0268-1242/13/7/003

 

関連書籍

半導体の光物性

半導体の光物性

中山 正昭
¥5,500(as of 11/11 07:56)
Amazon product information
光物性入門

光物性入門

小林 浩一
¥3,520(as of 11/11 07:56)
Amazon product information

 

 

植木 穂香

投稿者の記事一覧

奈良先端大のD1です。ポラリトンについて研究しています。

関連記事

  1. 【Spiber】新卒・中途採用情報
  2. 化学者のためのエレクトロニクス講座~無線の歴史編~
  3. 私がケムステスタッフになったワケ(1)
  4. 化学研究ライフハック: 研究現場のGTD式タスク管理
  5. 高収率・高選択性―信頼性の限界はどこにある?
  6. ショウリョウバッタが吐くアレについて
  7. わずか6工程でストリキニーネを全合成!!
  8. 世界初!反転層型ダイヤMOSFETの動作実証に成功

注目情報

ピックアップ記事

  1. 人工DNAから医薬をつくる!
  2. 臭いの少ない1,3-プロパンジチオール等価体
  3. 化学者の卵、就職活動に乗りだす
  4. 【書籍】イシューからはじめよ~知的生産のシンプルな本質~
  5. 活性マグネシウム
  6. 第66回―「超分子集合体と外界との相互作用を研究する」Francesco Stellacci教授
  7. ニンニクの主要成分を人工的につくる
  8. 武田薬品、高血圧治療剤が米で心不全の効能追加
  9. ノーベル化学賞明日発表
  10. 1st Maruoka Conference on the Frontier of Organic Synthesis and Catalysis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP