[スポンサーリンク]

C

クルチウス転位 Curtius Rearrangement

[スポンサーリンク]

 

概要

カルボン酸・酸ハライドから誘導されるアシルアジドを加熱すると転位が起こり、イソシアネートが生成する。 この際、水を介在させておくとイソシアネートはただちに加水分解を受け、一炭素減炭されたアミンが得られる。光学活性な鎖状アミンを立体特異的に合成することが出来る、数少ない手法の一つである。

水の代わりに適切なアルコールを反応剤として選ぶことでBocやCbzなどの、任意のカルバメート保護アミンが得られるきわめて応用性の高い変換法でもある。

アジ化ナトリウムは爆発性があるため、爆発性の抑えられたジフェニルホスホリルアジド(DPPA)を用いる代替法が知られている。本法では、カルボン酸から直接穏和な条件にてアシルアジド→Curtius転位へとつなげられる。

基本文献

  • Curtius, T. Ber. 1890, 23, 3023.
  • Curtius, T. J. Prakt. Chem. 1894, 50, 275.
  • Shioiri, T.; Ninomiya, K.; Yamada, S.-i. J. Am. Chem. Soc. 1972, 94, 6203. DOI: 10.1021/ja00772a052
  • Ninomiya, K.; Shioiri, T.; Yamada, S.-i. Tetrahedron 197430, 2151. doi:10.1016/S0040-4020(01)97352-1
  • Smith, P. A. S. Org. React. 1946, 3, 337.
  • Scriven, E. F.; Turnbull, K.Chem. Rev. 198888, 297. DOI: 10.1021/cr00084a001
  • Wolff, O.; Waldvogel, S. R. Synthesis 2004, 1303. DOI: 10.1055/s-2004-815965

 

開発の歴史

ドイツの化学者Theodor Curtius(1857-1928)によって1890年に開発される。Curtiusは化学を学ぶ前は音楽を学んでした。その他に、ジアゾ酢酸エステル、ヒドラジン、ピラゾリン誘導体などを発見した。

Theodor Curtius

Theodor Curtius

反応機構

ナイトレン様の中間体を経由し、立体保持にて転位する。R’=H (水)の場合には、引き続く脱炭酸によってアミンが生成する。
curtiu1.gif

 

反応例


塩入試薬(DPPA)
による反応。[1] curtiu2.gif
&alpha-四級アミンなどの、合成困難なユニットを合成可能な強力な手法である。 [2] curtius_4.gif
タミフルの合成[3]

 

実験手順

 

実験のコツ・テクニック

 

参考文献

  1. Zhang, Q. et al. J. Org. Chem. 200065, 7977. DOI: 10.1021/jo000978e
  2. Murashige, K. et al. Tetrahedron 200258, 4917. doi:10.1016/S0040-4020(02)00436-2
  3. Yamatsugu, K.; Yin, L.; Kamijo, S.; Kimura, Y.; Kanai, M.; Shibasaki, M. Angew. Chem., Intl. Ed. 2009, 48, 1070. DOI: 10.1002/anie.200804777

 

関連反応

 

関連書籍

[amazonjs asin=”0198556721″ locale=”JP” title=”Reactive Intermediates (Oxford Chemistry Primers)”]

 

外部リンク

関連記事

  1. マクコーマック反応 McCormack Reaction
  2. 向山縮合試薬 Mukaiyama Condensation Re…
  3. 1,3-ジチアン 1,3-Dithiane
  4. ナザロフ環化 Nazarov Cyclization
  5. スルホキシド/セレノキシドのsyn-β脱離 Syn-β-elim…
  6. ロゼムンド・リンドセー ポルフィリン合成 Rothemund-L…
  7. ペイン転位 Payne Rearrangement
  8. フィッシャー インドール合成 Fischer Indole Sy…

注目情報

ピックアップ記事

  1. ナイトレンの求電子性を利用して中員環ラクタムを合成する
  2. C–NおよびC–O求電子剤間の還元的クロスカップリング
  3. SciFinderマイスター決定!
  4. 活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜
  5. リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている
  6. マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-
  7. 反応機構を書いてみよう!~電子の矢印講座・その2~
  8. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻き構造形成の仕組みを解明-
  9. 盗難かと思ったら紛失 千葉の病院で毒薬ずさん管理
  10. 有機機能材料 基礎から応用まで

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

融合する知とともに化学の視野を広げよう!「リンダウ・ノーベル賞受賞者会議」参加者募集中!

ドイツの保養地リンダウで毎年夏に1週間程度の日程で開催される、リンダウ・ノーベル賞受賞者会議(Lin…

ダイヤモンド半導体について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、究極の…

有機合成化学協会誌2025年6月号:カルボラン触媒・水中有機反応・芳香族カルボン酸の位置選択的変換・C(sp2)-H官能基化・カルビン錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年6月号がオンラインで公開されています。…

【日産化学 27卒】 【7/10(木)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会

現役研究者18名・内定者(26卒)9名が参加!日産化学について・就職活動の進め方・研究職のキャリアに…

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP