[スポンサーリンク]

化学者のつぶやき

キノリンをLED光でホップさせてインドールに

[スポンサーリンク]

キノリンN-オキシドからN-アシルインドールへの骨格編集法が開発された。光源としてこれまで使われていた水銀ランプの代わりに390 nmのLEDを用いたことが本反応の鍵である。

キノリンからインドールへの骨格編集

スキャフォールド・ホッピングとは、もとの分子とは異なる母骨格をもち、類似した活性を有する生物活性物質を、コンピューターによる構造探索により創出する手法である[1]。例えば、脂質異常性治療薬pitavastatinは、fluvastatinをもとにスキャフォールド・ホッピングにより生み出された(図1A)。一般的にスキャフォールド・ホッピングで提示される分子は、もとの分子と母骨格が異なるため、全く異なる合成経路を新たに立案する必要がある。

スキャフォールド・ホッピングを容易にする技術として、骨格編集が近年注目を集めている[2]。骨格編集とは、C–H官能基化などの骨格修飾反応と異なり、骨格自体を改変する手法を指す。インドールからキノリンへの骨格編集反応として、これまでに著者らはα-クロロジアジリンを用いた炭素原子挿入反応を報告した(図1B)[3]。一方で、キノリンN-オキシドからインドールへの光異性化反応はBuchardt、Kaneko、Streith、Albiniらによって古くから研究されていたが、光照射後に複雑な混合物を与えるという課題があった(図1C)[4]。今回著者らは、水銀ランプの代わりに390 nmのLEDを光源に用いると、副生成物の生成が抑制され、キノリンN-オキシドから高収率でN-アシルインドールが得られることを見いだした。光照射により生成する3,1-ベンゾオキサゼピン中間体を酸加水分解することで、様々なキノリンN-オキシドからインドールを合成することに成功した。また、筆者らの先行研究と本手法を組み合わせ、キノリンとインドールの相互変換も実現した。

図1. (A) キノリンとインドール骨格を有する医薬品 (B) 筆者らの先行研究 (C) キノリンN-オキシドの光反応 (D) 本研究

“Scaffold Hopping by Net Photochemical Carbon Deletion of Azaarenes”

Woo, J.; Christian, A. H.; Burgess, S. A.; Jiang, Y.; Mansoor, U. F.; Levin, M. D. Science 2022, 376, 527–532.

DOI: 10.1126/science.abo4282

論文著者の紹介

研究者:Mark D. Levin

研究者の経歴:

2008–2012 B.S., University of Rochester, USA (Prof. A. J. Frontier)
2012–2017 Ph.D., University of California, Berkeley, USA (Prof. F. D. Toste)
2017–2019 Postdoc, Harvard University, USA (Prof. E. N. Jacobsen)
2019– Assistant Professor, Department of Chemistry, The University of Chicago, USA

研究内容:一原子骨格編集、同位体標識および放射性同位体標識法

論文の概要

本反応は、C2位に置換基をもつキノリンN-オキシド1に390 nmのLED光を照射し、その後TFAを添加することで、N-アシルインドール2を与える(図 2A)。シアノ基(1a)や複数のハロゲン原子をもつキノリンN-オキシド(1b)からは、それぞれインドール2aおよび2bが得られた。本異性化反応は1cなどのキノリン以外の複素環にも適用できた。また、Pitavastatin誘導体を用いると中程度の収率でインドール2dを与えた。なお、光源に水銀ランプを用いると2b2c2dの収率は大幅に低下した。

NMR実験およびX 線結晶構造解析から本反応では、光照射によりキノリンN-オキシドからベンゾオキサゼピンが生成することが示された(詳細は本文参照)。ベンゾオキサゼピンからインドールへの変換は、酸素同位体18Oを用いた標識実験により、二通りの反応経路が提唱されている(図 2B)。まず、ベンゾオキサゼピン[18O]-3eのプロトン化によりイミニウムまたはオキソカルベニウムイオンが生じる。その後、オキサゼピンの加水分解、脱水を伴った縮環反応が進行しインドール2eが得られる。2eの同位体標識率が3eよりも低下したことから、これら両反応経路が競争すると結論づけられた。

今回筆者らが開発したキノリンからインドールへの骨格編集(一炭素欠損)と過去に開発したインドールからキノリンへの骨格編集(一炭素挿入)を組み合わせることで、キノリンからシンノリンの合成が可能となった(図1C)。まず、キノリン4fの一炭素欠損反応により2-メチルインドール(2f)へと変換した。続くα-クロロジアジリンを用いた4gの一炭素挿入により、4fのC2位とC3位の置換基が入れ替わった異性体4gを得た。次に一炭素欠損反応により、4gから2-フェニルインドール(2g)へと誘導した。さらに2gの窒素原子挿入反応により、シンノリン5gを合成した[5]

図2. (A) 基質適用範囲 (B) 18O同位体標識実験 (C) 骨格編集反応を駆使したシンノリンの合成

 

以上著者らは、従来用いられてきた水銀ランプに代わり、390 nmのLEDを光源に用いることで、キノリンから、インドールを効率的に合成する手法を報告した。今後、種々の骨格編集が開発され、スキャフォールド・ホッピングを駆使した低分子創薬を加速させると期待する。

参考文献

  1. Hu, Y.; Stumpfe, D.; Bajorath, J. Recent Advances in Scaffold Hopping. J. Med. Chem. 2017, 60, 1238–1246. DOI: 10.1021/acs.jmedchem.6b01437
  2. (a) Lyu, H.; Kevlishvili, I.; Yu, X.; Liu, P.; Dong, G. Boron Insertion into Alkyl Ether Bonds via Zinc/nickel Tandem Catalysis. Science 2021, 372, 175−182. DOI: 1038/s41586-018-0700-3 (b) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Deconstructive Diversification of Cyclic Amines.Nature 2018, 564, 244−248. DOI: 10.1126/science.abg5526 (c) Kennedy, S. H.; Dherange, B. D.; Berger, K. J.; Levin, M. D. Skeletal Editing Through Direct Nitrogen Deletion of Secondary Amines. Nature 2021, 593, 223–227. DOI: 10.1038/s41586-021-03448-9 (d) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257−10274. DOI: 10.1021/jm501100b (e) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47, 7996−8017. DOI: 10.1039/c8cs00389k (f) Liu, X.; Liu, C.; Cheng, X. Ring-Contraction of Hantzsch Esters and Their Derivatives to Pyrroles via Electrochemical Extrusion of Ethyl Acetate out of Aromatic Rings. Green Chem. 2021, 23, 3468–3473. DOI: 10.1039/d1gc00487e
  3. Dherange, B. D.; Kelly, P. Q.; Liles, J. P.; Sigman, M. S.; Levin, M. D. Carbon Atom Insertion into Pyrroles and Indoles Promoted by Chlorodiazirines. J. Am. Chem. Soc. 2021, 143, 11337–11344. DOI: 10.1021/jacs.1c06287
  4. (a) Albini, A.; Alpegiani, M. The Photochemistry of The N-Oxide Function. Rev. 1984, 84, 43–71. DOI: 10.1021/cr00059a004 (b) Spence, G. G.; Taylor, E. C.; Buchardt, O. Chem. Rev. 1969, 69, 231–265. DOI: 10.1021/cr60264a003 (c) J. S. Poole. Recent Advances in the Photochemistry of Heterocyclic N-Oxides and Their Derivatives. In Heterocyclic N-Oxides; O. V. Larionov, Ed.; Topics in Heterocyclic Chemistry, Vol. 53; Springer Cham, 2017; pp 111–151. DOI: 10.1007/978-3-319-60687-3
  5. Somei, M.; Kurizuka, Y. A Facile Route to Cinnolines. Chem. Lett. 1979, 8, 127–128. DOI: 10.1246/cl.1979.127

 

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学協会誌2022年10月号:トリフルオロメチル基・気体…
  2. Reaxys Ph.D Prize 2014受賞者決定!
  3. 製薬業界の現状
  4. 遷移金属を用いない脂肪族C-H結合のホウ素化
  5. 超原子結晶!TCNE!インターカレーション!!!
  6. 塗る、刷る、printable!進化するナノインクと先端デバイス…
  7. フルオロホルムを用いた安価なトリフルオロメチル化反応の開発
  8. 層状複水酸化物のナノ粒子化と触媒応用

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2021年6月号:SGLT2阻害薬・シクロペンチルメチルエーテル・4-メチルテトラヒドロピラン・糖-1-リン酸・新規ホスホジエステラーゼ阻害薬
  2. 有機合成の進む道~先駆者たちのメッセージ~
  3. ポンコツ博士の海外奮闘録③ 〜博士,車を買う~
  4. AgOTf/CuI共触媒によるN-イミノイソキノリニウムのタンデムアルキニル化環化反応
  5. 森本 正和 Masakazu Morimoto
  6. カイニン酸 kainic acid
  7. ウルマンエーテル合成 Ullmann Ether Synthesis
  8. シュプリンガー・ネイチャー・グループが学問の継続のために経済的な支援を必要とする日本の大学生・大学院生を対象にチャリティー資金を提供
  9. Brønsted酸触媒とヒドロシランによるシラFriedel-Crafts反応
  10. ついにシリーズ10巻目!化学探偵Mr.キュリー10

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

【ジーシー】新卒採用情報(2024卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

【書評】科学実験でスラスラわかる! 本当はおもしろい 中学入試の理科

大和書房さんより 2022年9月に刊行された『科学実験でスラスラわかる!…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP