[スポンサーリンク]

化学者のつぶやき

キノリンをLED光でホップさせてインドールに

[スポンサーリンク]

キノリンN-オキシドからN-アシルインドールへの骨格編集法が開発された。光源としてこれまで使われていた水銀ランプの代わりに390 nmのLEDを用いたことが本反応の鍵である。

キノリンからインドールへの骨格編集

スキャフォールド・ホッピングとは、もとの分子とは異なる母骨格をもち、類似した活性を有する生物活性物質を、コンピューターによる構造探索により創出する手法である[1]。例えば、脂質異常性治療薬pitavastatinは、fluvastatinをもとにスキャフォールド・ホッピングにより生み出された(図1A)。一般的にスキャフォールド・ホッピングで提示される分子は、もとの分子と母骨格が異なるため、全く異なる合成経路を新たに立案する必要がある。

スキャフォールド・ホッピングを容易にする技術として、骨格編集が近年注目を集めている[2]。骨格編集とは、C–H官能基化などの骨格修飾反応と異なり、骨格自体を改変する手法を指す。インドールからキノリンへの骨格編集反応として、これまでに著者らはα-クロロジアジリンを用いた炭素原子挿入反応を報告した(図1B)[3]。一方で、キノリンN-オキシドからインドールへの光異性化反応はBuchardt、Kaneko、Streith、Albiniらによって古くから研究されていたが、光照射後に複雑な混合物を与えるという課題があった(図1C)[4]。今回著者らは、水銀ランプの代わりに390 nmのLEDを光源に用いると、副生成物の生成が抑制され、キノリンN-オキシドから高収率でN-アシルインドールが得られることを見いだした。光照射により生成する3,1-ベンゾオキサゼピン中間体を酸加水分解することで、様々なキノリンN-オキシドからインドールを合成することに成功した。また、筆者らの先行研究と本手法を組み合わせ、キノリンとインドールの相互変換も実現した。

図1. (A) キノリンとインドール骨格を有する医薬品 (B) 筆者らの先行研究 (C) キノリンN-オキシドの光反応 (D) 本研究

“Scaffold Hopping by Net Photochemical Carbon Deletion of Azaarenes”

Woo, J.; Christian, A. H.; Burgess, S. A.; Jiang, Y.; Mansoor, U. F.; Levin, M. D. Science 2022, 376, 527–532.

DOI: 10.1126/science.abo4282

論文著者の紹介

研究者:Mark D. Levin

研究者の経歴:

2008–2012 B.S., University of Rochester, USA (Prof. A. J. Frontier)
2012–2017 Ph.D., University of California, Berkeley, USA (Prof. F. D. Toste)
2017–2019 Postdoc, Harvard University, USA (Prof. E. N. Jacobsen)
2019– Assistant Professor, Department of Chemistry, The University of Chicago, USA

研究内容:一原子骨格編集、同位体標識および放射性同位体標識法

論文の概要

本反応は、C2位に置換基をもつキノリンN-オキシド1に390 nmのLED光を照射し、その後TFAを添加することで、N-アシルインドール2を与える(図 2A)。シアノ基(1a)や複数のハロゲン原子をもつキノリンN-オキシド(1b)からは、それぞれインドール2aおよび2bが得られた。本異性化反応は1cなどのキノリン以外の複素環にも適用できた。また、Pitavastatin誘導体を用いると中程度の収率でインドール2dを与えた。なお、光源に水銀ランプを用いると2b2c2dの収率は大幅に低下した。

NMR実験およびX 線結晶構造解析から本反応では、光照射によりキノリンN-オキシドからベンゾオキサゼピンが生成することが示された(詳細は本文参照)。ベンゾオキサゼピンからインドールへの変換は、酸素同位体18Oを用いた標識実験により、二通りの反応経路が提唱されている(図 2B)。まず、ベンゾオキサゼピン[18O]-3eのプロトン化によりイミニウムまたはオキソカルベニウムイオンが生じる。その後、オキサゼピンの加水分解、脱水を伴った縮環反応が進行しインドール2eが得られる。2eの同位体標識率が3eよりも低下したことから、これら両反応経路が競争すると結論づけられた。

今回筆者らが開発したキノリンからインドールへの骨格編集(一炭素欠損)と過去に開発したインドールからキノリンへの骨格編集(一炭素挿入)を組み合わせることで、キノリンからシンノリンの合成が可能となった(図1C)。まず、キノリン4fの一炭素欠損反応により2-メチルインドール(2f)へと変換した。続くα-クロロジアジリンを用いた4gの一炭素挿入により、4fのC2位とC3位の置換基が入れ替わった異性体4gを得た。次に一炭素欠損反応により、4gから2-フェニルインドール(2g)へと誘導した。さらに2gの窒素原子挿入反応により、シンノリン5gを合成した[5]

図2. (A) 基質適用範囲 (B) 18O同位体標識実験 (C) 骨格編集反応を駆使したシンノリンの合成

 

以上著者らは、従来用いられてきた水銀ランプに代わり、390 nmのLEDを光源に用いることで、キノリンから、インドールを効率的に合成する手法を報告した。今後、種々の骨格編集が開発され、スキャフォールド・ホッピングを駆使した低分子創薬を加速させると期待する。

参考文献

  1. Hu, Y.; Stumpfe, D.; Bajorath, J. Recent Advances in Scaffold Hopping. J. Med. Chem. 2017, 60, 1238–1246. DOI: 10.1021/acs.jmedchem.6b01437
  2. (a) Lyu, H.; Kevlishvili, I.; Yu, X.; Liu, P.; Dong, G. Boron Insertion into Alkyl Ether Bonds via Zinc/nickel Tandem Catalysis. Science 2021, 372, 175−182. DOI: 1038/s41586-018-0700-3 (b) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Deconstructive Diversification of Cyclic Amines.Nature 2018, 564, 244−248. DOI: 10.1126/science.abg5526 (c) Kennedy, S. H.; Dherange, B. D.; Berger, K. J.; Levin, M. D. Skeletal Editing Through Direct Nitrogen Deletion of Secondary Amines. Nature 2021, 593, 223–227. DOI: 10.1038/s41586-021-03448-9 (d) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257−10274. DOI: 10.1021/jm501100b (e) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47, 7996−8017. DOI: 10.1039/c8cs00389k (f) Liu, X.; Liu, C.; Cheng, X. Ring-Contraction of Hantzsch Esters and Their Derivatives to Pyrroles via Electrochemical Extrusion of Ethyl Acetate out of Aromatic Rings. Green Chem. 2021, 23, 3468–3473. DOI: 10.1039/d1gc00487e
  3. Dherange, B. D.; Kelly, P. Q.; Liles, J. P.; Sigman, M. S.; Levin, M. D. Carbon Atom Insertion into Pyrroles and Indoles Promoted by Chlorodiazirines. J. Am. Chem. Soc. 2021, 143, 11337–11344. DOI: 10.1021/jacs.1c06287
  4. (a) Albini, A.; Alpegiani, M. The Photochemistry of The N-Oxide Function. Rev. 1984, 84, 43–71. DOI: 10.1021/cr00059a004 (b) Spence, G. G.; Taylor, E. C.; Buchardt, O. Chem. Rev. 1969, 69, 231–265. DOI: 10.1021/cr60264a003 (c) J. S. Poole. Recent Advances in the Photochemistry of Heterocyclic N-Oxides and Their Derivatives. In Heterocyclic N-Oxides; O. V. Larionov, Ed.; Topics in Heterocyclic Chemistry, Vol. 53; Springer Cham, 2017; pp 111–151. DOI: 10.1007/978-3-319-60687-3
  5. Somei, M.; Kurizuka, Y. A Facile Route to Cinnolines. Chem. Lett. 1979, 8, 127–128. DOI: 10.1246/cl.1979.127

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学者の卵、就職活動に乗りだす
  2. Reaxys Ph.D Prize2019ファイナリスト発表!
  3. 炭素繊維は鉄とアルミに勝るか? 1
  4. 付設展示会へ行こう!ーWiley編
  5. 工業生産モデルとなるフロー光オン・デマンド合成システムの開発に成…
  6. 多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を…
  7. 172番元素までの周期表が提案される
  8. 除虫菊に含まれる生理活性成分の生合成酵素を単離

注目情報

ピックアップ記事

  1. 世界初 ソフトワーム用自発光液 「ケミホタルペイント」が発売
  2. カフェインの覚醒効果を分子レベルで立証
  3. スルホニル保護基 Sulfonyl Protective Group
  4. 第一手はこれだ!:古典的反応から最新反応まで|第6回「有機合成実験テクニック」(リケラボコラボレーション)
  5. 世界初の気体可塑性エラストマー!!
  6. フラクタルな物質、見つかる
  7. 抽出精製型AJIPHASE法の開発
  8. 魔法のカイロ アラジン
  9. アンモニアを室温以下で分解できる触媒について
  10. 山本 尚 Hisashi Yamamoto

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP