[スポンサーリンク]

化学者のつぶやき

キノリンをLED光でホップさせてインドールに

[スポンサーリンク]

キノリンN-オキシドからN-アシルインドールへの骨格編集法が開発された。光源としてこれまで使われていた水銀ランプの代わりに390 nmのLEDを用いたことが本反応の鍵である。

キノリンからインドールへの骨格編集

スキャフォールド・ホッピングとは、もとの分子とは異なる母骨格をもち、類似した活性を有する生物活性物質を、コンピューターによる構造探索により創出する手法である[1]。例えば、脂質異常性治療薬pitavastatinは、fluvastatinをもとにスキャフォールド・ホッピングにより生み出された(図1A)。一般的にスキャフォールド・ホッピングで提示される分子は、もとの分子と母骨格が異なるため、全く異なる合成経路を新たに立案する必要がある。

スキャフォールド・ホッピングを容易にする技術として、骨格編集が近年注目を集めている[2]。骨格編集とは、C–H官能基化などの骨格修飾反応と異なり、骨格自体を改変する手法を指す。インドールからキノリンへの骨格編集反応として、これまでに著者らはα-クロロジアジリンを用いた炭素原子挿入反応を報告した(図1B)[3]。一方で、キノリンN-オキシドからインドールへの光異性化反応はBuchardt、Kaneko、Streith、Albiniらによって古くから研究されていたが、光照射後に複雑な混合物を与えるという課題があった(図1C)[4]。今回著者らは、水銀ランプの代わりに390 nmのLEDを光源に用いると、副生成物の生成が抑制され、キノリンN-オキシドから高収率でN-アシルインドールが得られることを見いだした。光照射により生成する3,1-ベンゾオキサゼピン中間体を酸加水分解することで、様々なキノリンN-オキシドからインドールを合成することに成功した。また、筆者らの先行研究と本手法を組み合わせ、キノリンとインドールの相互変換も実現した。

図1. (A) キノリンとインドール骨格を有する医薬品 (B) 筆者らの先行研究 (C) キノリンN-オキシドの光反応 (D) 本研究

“Scaffold Hopping by Net Photochemical Carbon Deletion of Azaarenes”

Woo, J.; Christian, A. H.; Burgess, S. A.; Jiang, Y.; Mansoor, U. F.; Levin, M. D. Science 2022, 376, 527–532.

DOI: 10.1126/science.abo4282

論文著者の紹介

研究者:Mark D. Levin

研究者の経歴:

2008–2012 B.S., University of Rochester, USA (Prof. A. J. Frontier)
2012–2017 Ph.D., University of California, Berkeley, USA (Prof. F. D. Toste)
2017–2019 Postdoc, Harvard University, USA (Prof. E. N. Jacobsen)
2019– Assistant Professor, Department of Chemistry, The University of Chicago, USA

研究内容:一原子骨格編集、同位体標識および放射性同位体標識法

論文の概要

本反応は、C2位に置換基をもつキノリンN-オキシド1に390 nmのLED光を照射し、その後TFAを添加することで、N-アシルインドール2を与える(図 2A)。シアノ基(1a)や複数のハロゲン原子をもつキノリンN-オキシド(1b)からは、それぞれインドール2aおよび2bが得られた。本異性化反応は1cなどのキノリン以外の複素環にも適用できた。また、Pitavastatin誘導体を用いると中程度の収率でインドール2dを与えた。なお、光源に水銀ランプを用いると2b2c2dの収率は大幅に低下した。

NMR実験およびX 線結晶構造解析から本反応では、光照射によりキノリンN-オキシドからベンゾオキサゼピンが生成することが示された(詳細は本文参照)。ベンゾオキサゼピンからインドールへの変換は、酸素同位体18Oを用いた標識実験により、二通りの反応経路が提唱されている(図 2B)。まず、ベンゾオキサゼピン[18O]-3eのプロトン化によりイミニウムまたはオキソカルベニウムイオンが生じる。その後、オキサゼピンの加水分解、脱水を伴った縮環反応が進行しインドール2eが得られる。2eの同位体標識率が3eよりも低下したことから、これら両反応経路が競争すると結論づけられた。

今回筆者らが開発したキノリンからインドールへの骨格編集(一炭素欠損)と過去に開発したインドールからキノリンへの骨格編集(一炭素挿入)を組み合わせることで、キノリンからシンノリンの合成が可能となった(図1C)。まず、キノリン4fの一炭素欠損反応により2-メチルインドール(2f)へと変換した。続くα-クロロジアジリンを用いた4gの一炭素挿入により、4fのC2位とC3位の置換基が入れ替わった異性体4gを得た。次に一炭素欠損反応により、4gから2-フェニルインドール(2g)へと誘導した。さらに2gの窒素原子挿入反応により、シンノリン5gを合成した[5]

図2. (A) 基質適用範囲 (B) 18O同位体標識実験 (C) 骨格編集反応を駆使したシンノリンの合成

 

以上著者らは、従来用いられてきた水銀ランプに代わり、390 nmのLEDを光源に用いることで、キノリンから、インドールを効率的に合成する手法を報告した。今後、種々の骨格編集が開発され、スキャフォールド・ホッピングを駆使した低分子創薬を加速させると期待する。

参考文献

  1. Hu, Y.; Stumpfe, D.; Bajorath, J. Recent Advances in Scaffold Hopping. J. Med. Chem. 2017, 60, 1238–1246. DOI: 10.1021/acs.jmedchem.6b01437
  2. (a) Lyu, H.; Kevlishvili, I.; Yu, X.; Liu, P.; Dong, G. Boron Insertion into Alkyl Ether Bonds via Zinc/nickel Tandem Catalysis. Science 2021, 372, 175−182. DOI: 1038/s41586-018-0700-3 (b) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Deconstructive Diversification of Cyclic Amines.Nature 2018, 564, 244−248. DOI: 10.1126/science.abg5526 (c) Kennedy, S. H.; Dherange, B. D.; Berger, K. J.; Levin, M. D. Skeletal Editing Through Direct Nitrogen Deletion of Secondary Amines. Nature 2021, 593, 223–227. DOI: 10.1038/s41586-021-03448-9 (d) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257−10274. DOI: 10.1021/jm501100b (e) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent Advances in Chemical Dearomatization of Nonactivated Arenes. Chem. Soc. Rev. 2018, 47, 7996−8017. DOI: 10.1039/c8cs00389k (f) Liu, X.; Liu, C.; Cheng, X. Ring-Contraction of Hantzsch Esters and Their Derivatives to Pyrroles via Electrochemical Extrusion of Ethyl Acetate out of Aromatic Rings. Green Chem. 2021, 23, 3468–3473. DOI: 10.1039/d1gc00487e
  3. Dherange, B. D.; Kelly, P. Q.; Liles, J. P.; Sigman, M. S.; Levin, M. D. Carbon Atom Insertion into Pyrroles and Indoles Promoted by Chlorodiazirines. J. Am. Chem. Soc. 2021, 143, 11337–11344. DOI: 10.1021/jacs.1c06287
  4. (a) Albini, A.; Alpegiani, M. The Photochemistry of The N-Oxide Function. Rev. 1984, 84, 43–71. DOI: 10.1021/cr00059a004 (b) Spence, G. G.; Taylor, E. C.; Buchardt, O. Chem. Rev. 1969, 69, 231–265. DOI: 10.1021/cr60264a003 (c) J. S. Poole. Recent Advances in the Photochemistry of Heterocyclic N-Oxides and Their Derivatives. In Heterocyclic N-Oxides; O. V. Larionov, Ed.; Topics in Heterocyclic Chemistry, Vol. 53; Springer Cham, 2017; pp 111–151. DOI: 10.1007/978-3-319-60687-3
  5. Somei, M.; Kurizuka, Y. A Facile Route to Cinnolines. Chem. Lett. 1979, 8, 127–128. DOI: 10.1246/cl.1979.127

 

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. STAP細胞問題から見えた市民と科学者の乖離ー後編
  2. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click…
  3. 窒素を挿入してペリレンビスイミドを曲げる〜曲面π共役分子の新設計…
  4. オペレーションはイノベーションの夢を見るか? その1
  5. 蒲郡市生命の海科学館で化学しようよ
  6. 有機合成化学協会誌2020年10月号:ハロゲンダンス・Cpルテニ…
  7. 第三回 ケムステVシンポ「若手化学者、海外経験を語る」を開催しま…
  8. DNAを切らずにゲノム編集-一塩基変換法の開発

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 白血病治療新薬の候補物質 京大研究グループと日本新薬が開発
  2. 化学のちからで抗体医薬を武装する
  3. 元素周期表:文科省の無料配布用、思わぬ人気 10万枚増刷、100円で販売
  4. 化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学メーカー編~
  5. リチウムイオン電池の正極・負極≪活物質技術≫徹底解説セミナー
  6. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用
  7. 夏の必需品ー虫除けスプレーあれこれ
  8. ピナー ピリミジン合成 Pinner Pyrimidine Synthesis
  9. 2007年文化勲章・文化功労者決定
  10. 合成後期多様化法 Late-Stage Diversification

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

注目情報

最新記事

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

第2回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、4月21日(金)に第2…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2

前回のPart 1に引き続き第二弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

マテリアルズ・インフォマティクスにおける従来の実験計画法とベイズ最適化の比較

開催日:2023/03/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1

待ちに待った対面での日本化学会春季年会。なんと4年ぶりなんですね。今年は…

グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応

第493回のスポットライトリサーチは、東京農工大学院 工学府生命工学専攻 生命有機化学講座(長澤・寺…

カーボンニュートラルへの化学工学: CO₂分離回収,資源化からエネルギーシステム構築まで

概要いま我々は,カーボンニュートラルの実現のために,最も合理的なエネルギー供給と利用の選…

クリック反応を用いて、機能性分子を持つイナミド類を自在合成!

第492 回のスポットライトリサーチは、岐阜薬科大学 合成薬品製造学研究室 (伊…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP