[スポンサーリンク]

化学者のつぶやき

ペンタフルベンが環構築の立役者!Bipolarolide D の全合成

[スポンサーリンク]

4つの五員環が連結するユニークな構造をもつ天然物bipolarolide Dの全合成を達成した。エナンチオ選択的なペンタフルベンの[6+2]環化付加により炭素骨格を華麗に構築し、僅か13工程での合成に成功した。

 (–)-Bipolarolide D の合成

OphiobolinはBipolarisAspergillus属などの病原性真菌から単離される、5-8-5三環式骨格をもつセスタテルペン群であり、抗インフルエンザウイルス活性や癌幹細胞に対する抗増殖活性などの生物活性を示す[1]。その多様な薬理的活性から医薬品候補とされている一方、合成難易度の高さから、合成例は現在4例にとどまる(図1A)[2]。岸らは、1989年に(+)-ophiobolin Cの初の合成を報告した[2a]。その後、2011年に中田らが類縁体である(+)-ophiobolin A、Maimoneら(2016年と2019年)が(–)-6-epi-ophiobolin N と(+)-6-epi-ophiobolin Aの合成を報告した[2b–d]

一方、2019年にZhangらによって植物病原菌Bipolarisからophiobolin由来のセスタテルペンbipolarolide A–Gの単離が報告された[3]。Bipolarolide類はophiobolin Fから酵素により3種の炭素骨格に誘導され、5-8-5三環式骨格から分子内環化によりさらに縮環した構造的特徴をもつ。例えば、bipolarolide AおよびBはophiobolin FのA環が反転し、C5位とC10位との結合形成によって5-6-6-5骨格を形成する(図1B)[4]。最終的に酸素原子が架橋し、高度に縮環した五環式構造をもつ。Ophiobolin群に属するbipolarolide類も多様な生物活性をもつことが期待され、探索をするべく合成化学者が盛んに研究標的とした。実際に、最近Jiaらはbipolarolide AとBの全合成を達成した[4]

今回、厦門大学のLuらは、(–)-bipolarolide D(1)の全合成に挑戦した。1はophiobolin CのC6位とC10位で結合形成された3つの連続する不斉四級炭素を含む5-5-5-5縮環構造をもつ。著者らは以下のような逆合成解析により合成を試みた(図1C)[5]。後期段階で2のC14位に側鎖を導入するとし、早期段階で2つのC–C結合形成反応を用いて5-5-5-5四環式骨格の構築法を立案した。すなわち、3の分子内Heck環化によりD環を形成し、ペンタフルベンの反応性から着想を得た4の[6+2]環化付加によって3のA/B/C環を構築できると考えた[5] 

図1. (A) Ophiobolinの合成例 (B) Bipolarolides (C) bipolarolide Dの逆合成解析

 

“Concise Total Synthesis of ()-Bipolarolide D”

Sun, S.; Wei, Q.; Liu, Y.; Lu, Z. J. Am. Chem. Soc. 2024, 146, 14427–14432.  DOI: 10.1021/jacs.4c04059

論文著者の紹介

研究者:Zhaohong Lu (陆钊洪)

研究者の経歴:

2010       B.Sc., Sun Yat-Sen University, China (Prof. Zhishu Huang) 
2010–2011 Research Assistant, Sun Yat-Sen University, China (Prof. Zhishu Huang)
2016       Ph.D., Shanghai Institute of Organic Chemistry, Shanghai (SIOC), China (Prof. Ang Li)
2016–2017 Assistant Researcher, SIOC, China (Prof. Ang Li)
2017–2019 Postdoc, Massachusetts Institute of Technology (MIT), USA (Prof. Stephen L. Buchwald)
2019–2020 Postdoc, MIT, USA (Assistant Prof. Alison Wendlandt)
2020–2022 Associate Professor, Xiamen University, Chin
2022–   Professor, Xiamen University, China

研究内容:高い生物活性を有する複雑天然物の合成研究、有機電解合成

論文の概要

図2に1の合成経路を示す。アルデヒド5から3工程で誘導できるペンタフルベン4に対し、林・Jørgensen触媒を作用させ、エナミン中間体7を経由したエナンチオ選択的な[6+2]環化付加反応を試みた[5]。その結果、C11位の不斉炭素の導入およびA/B/Cの5-5-5縮環をもつ、キラルなケトン8を合成できた。続いて、8のペンタフルベンおよびカルボニル基のα位に位置するC10位から熱力学的に安定なエノラートを生成し、位置選択的なアルキル化により9を得た。次に、9のPd(OAc)2と酢酸銀を用いたHeck環化反応によって望みの四環式骨格10を数工程で構築した[6]10のC1=C2の選択的水素化およびC3位のアルコールの酸化には[Rh(COD)2]BF4が有効であることがわかった[7]。立体障害によりC4=C5は還元されにくく、10からジケトン11を経由し、Grignard試薬との立体選択的な付加反応により12を与えた。12は酸性条件で分解したため、中性条件で使用できるPDC酸化でジケトン13へと導いた。後期段階でC14位に側鎖の導入を試みたところ、第3級アルコールではなく立体的に近接するカルボニル基と反応しヘミケタール14を与えた。これはdesilyl-14のX線構造解析によって確認した。14から側鎖の増炭、脱水およびシリル基の除去によって、5から計13工程でbipolarolide D(1)の合成を達成した。

図2. (–)-Bipolarolide Dの全合成

 

以上、(–)-bipolarolide Dの全合成が報告された。既報のエナンチオ選択的なペンタフルベンの[6+2]環化付加を巧みに利用した、効率的な合成である。他のbipolarolide 類の合成にも適用可能であり、続報を期待したい。

参考文献

  1. (a) Evidente, A. The Incredible Story of Ophiobolin A and Sphaeropsidin A: Two Fungal Terpenes from Wilt-Inducing Phytotoxins to Promising Anticancer Compounds. Nat. Prod. Rep. 2024, 41, 434–468. DOI: 10.1039/D3NP00035D (b) Au, T. K.; Chick, W. S. H.; Leung, P. C. The Biology of Ophiobolins. Life Sciences 2000, 67, 733–742. DOI: 10.1016/S0024-3205(00)00668-8 (c) Kasukabe, T.; Okabe‐Kado, J.; Honma, Y. Cotylenin A, a New Differentiation Inducer, and Rapamycin Cooperatively Inhibit Growth of Cancer Cells through Induction of Cyclin G2. Cancer Sci. 2008, 99, 1693–1698. DOI: 10.1111/j.1349-7006.2008.00867.x (d) Tian, W.; Deng, Z.; Hong, K. The Biological Activities of Sesterterpenoid-Type Ophiobolins. Mar. Drugs 2017, 15, 229. DOI: 10.3390/md15070229
  2. (a) Rowley, M.; Tsukamoto, M.; Kishi, Y. Total Synthesis of (+)-Ophiobolin C J. Am. Chem. Soc. 1989, 111, 2735–2737. DOI: 10.1021/ja00189a069 (b) Tsuna, K.; Noguchi, N.; Nakada, M. Convergent Total Synthesis of (+)‐Ophiobolin A. Angew. Chem., Int. Ed. 2011, 50, 9452–9455. DOI: 10.1002/anie.201104447 (c) Brill, Z. G.; Grover, H. K.; Maimone, T. J. Enantioselective Synthesis of an Ophiobolin Sesterterpene via a Programmed Radical Cascade. Science 2016, 352, 1078–1082. DOI: 10.1126/science.aaf6742 (d) Thach, D. Q.; Brill, Z. G.; Grover, H. K.; Esguerra, K. V.; Thompson, J. K.; Maimone, T. J. Total Synthesis of (+)‐6‐ epi ‐Ophiobolin A. Angew. Chem., Int. Ed. 2020, 59, 1532–1536. DOI: 10.1002/anie.201913150
  3. Liu, M.; Sun, W.; Shen, L.; He, Y.; Liu, J.; Wang, J.; Hu, Z.; Zhang, Y. Bipolarolides A–G: Ophiobolin‐Derived Sesterterpenes with Three New Carbon Skeletons from Bipolaris Sp. TJ403B1. Angew. Chem., Int. Ed. 2019, 58, 12091–12095. DOI: 10.1002/anie.201905966
  4. Li, B.; Tan, C.; Ma, T.; Jia, Y. Bioinspired Total Synthesis of Bipolarolides A and B. Angew. Chem., Int. Ed. 2024, 63, e202319306. DOI: 10.1002/anie.202319306
  5. (a) Hayashi, Y.; Gotoh, H.; Honma, M.; Sankar, K.; Kumar, I.; Ishikawa, H.; Konno, K.; Yui, H.; Tsuzuki, S.; Uchimaru, T. Organocatalytic, Enantioselective Intramolecular [6 + 2] Cycloaddition Reaction for the Formation of Tricyclopentanoids and Insight on Its Mechanism from a Computational Study. Am. Chem. Soc. 2011, 133, 20175–20185. DOI: 10.1021/ja108516b (b) Wu, T. C.; Houk, K. N. Construction of Linear-Fused Tricyclopentanoids by Intramolecular [6 + 2] Cycloadditions of Fulvenes with Enamines. J. Am. Chem. Soc. 1985, 107, 5308–5309. DOI: 10.1021/ja00304a065 (c) McLeod, D.; Thøgersen, M. K.; Jessen, N. I.; Jørgensen, K. A.; Jamieson, C. S.; Xue, X.-S.; Houk, K. N.; Liu, F.; Hoffmann, R. Expanding the Frontiers of Higher-Order Cycloadditions. Acc. Chem. Res. 2019, 52, 3488–3501. DOI: 10.1021/acs.accounts.9b00498 (d) Chang, S.-J.; McNally, D.; Shary-Tehrany, S.; Sister Mary James Hickey; Boyd, R. H. Heats of Combustion and Strain Energies of Bicyclo[n.m.0]Alkanes. J. Am. Chem. Soc. 1970, 92, 3109–3118. DOI: 10.1021/ja00713a032
  6. (a) Kagechika, K.; Shibasaki, M. Asymmetric Heck Reaction: A Catalytic Asymmetric Synthesis of the Key Intermediate for .DELTA.9(12)-Capnellene-3.beta.,8.beta.,10.alpha.-triol and .DELTA.9(12)-Capnellene-3.beta.,8.beta.,10.alpha.,14-tetrol. J. Org. Chem. 1991, 56, 4093–4094. DOI: 10.1021/jo00013a004 (b) Kagechika, K.; Ohshima, T.; Shibasaki, M. Asymmetric Heck Reaction-Anion Capture Process. A Catalytic Asymmetric Synthesis of the Key Intermediates for the Capnellenols. Tetrahedron 1993, 49, 1773–1782. DOI: 10.1016/S0040-4020(01)80534-2
  7. (a) Uma, R.; Crévisy, C.; Grée, R. Transposition of Allylic Alcohols into Carbonyl Compounds Mediated by Transition Metal Complexes. Chem. Rev.2003, 103, 27–52. DOI: 10.1021/cr0103165 (b) Liu, T.-L.; Ng, T. W.; Zhao, Y. Rhodium-Catalyzed Enantioselective Isomerization of Secondary Allylic Alcohols. J. Am. Chem. Soc. 2017, 139, 3643–3646. DOI: 10.1021/jacs.7b01096
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  2. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…
  3. Reaxys Prize 2012ファイナリスト45名発表!
  4. 元素名と中国語
  5. 天秤で量れるのは何mgまで?
  6. ChemDraw for iPadを先取りレビュー!
  7. sp3炭素のクロスカップリング反応の機構解明研究
  8. 柴田科学 合成反応装置ケミストプラザ CP-400型をデモしてみ…

注目情報

ピックアップ記事

  1. 鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化
  2. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Part II
  3. 電気化学的一炭素挿入反応でピロールからピリジンを合成~電気化学的酸化により、従来と異なる位置への炭素挿入を可能に~
  4. セルロースナノファイバーの真価
  5. 第156回―「異種金属―有機構造体の創製」Stéphane Baudron教授
  6. ニトロンの1,3-双極子付加環化 1,3-Dipolar Cycloaddition of Nitrone
  7. ミドリムシでインフルエンザ症状を緩和?
  8. 2016年1月の注目化学書籍
  9. ムレキシド反応 Murexide reaction
  10. アミドをエステルに変化させる触媒

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP