[スポンサーリンク]

化学者のつぶやき

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

[スポンサーリンク]

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的αアミド化が開発された。可視光照射により効率的に生じるFeCl3がジオキサゾロンを活性化することが本手法の鍵である。

アルデヒドのエナンチオ選択的α-アミド化

a-アミノカルボニル骨格は医薬品や生物活性物質に頻繁にみられる。中でもα-アミノアルデヒドはペプチドミメティック合成に利用される非天然型アミノ酸の前駆体として重宝されてきた[1]。その有用性から、これまでにα-アミノ酸を出発物質とするキラルプール法やエナミドの変換法など、多様な不斉α-アミノアルデヒド合成法が開発されてきた(図1A)[2]。窒素ラジカルを利用した先駆的な例として、MacMillanらはアルデヒドの触媒的ラジカル型不斉a-アミノ化を報告した(図1B)[3]。本手法はキラルなアミン触媒とアルデヒドから生成したエナミンが、カルバマート(窒素源)から生成したラジカルと反応し、高エナンチオ選択的にa-アミノアルデヒドを与える。しかし、使用できる窒素源は、感光性のジニトロフェニルスルホニルオキシ(ODNs)基をもつカルバマートに限られていた。
本論文著者のChangらは上述のカルバマートと異なる窒素ラジカル前駆体として、カルボン酸から調製可能なジオキサゾロンに着目した(図1C)。ジオキサゾロンは金属触媒により高反応性の金属ナイトレノイドを生成し[4]、種々のC–N結合形成反応に利用される[5]。今回、著者らは鉄触媒存在下ジオキサゾロンを活性化し、キラルなエナミンと反応させることで、エナンチオ選択的なアルデヒドのα-アミド化が進行することを見いだした(図1D)。

図1. (A)α-アミノアルデヒドの合成法 (B) アルデヒドのα-アミノ化 (C) ジオキサゾロン/鉄触媒を用いた先行研究 (D) 本研究

 

“Visible-Light-Promoted Enantioselective α-Amidation of Aldehydes by Harnessing Organo-Iron Dual Catalysis”
Hore, S.; Jeong, J.; Kim, D.; Chang, S. J. Am. Chem. Soc. 2024, 146, 22172–22179. DOI: 10.1021/jacs.4c07884

論文著者の紹介

研究者:Sukbok Chang (研究室HP)
研究者の経歴:
1985 B.Sc., Korea University, South Korea
1987 M.Sc., Korea Advanced Institute of Science and Technology (KAIST), South Korea (Prof. Sunggak Kim)
1996 Ph.D., Harvard University, USA (Prof. Eric N. Jacobsen)
1996–1998   Postdoc, California Institute of Technology, USA (Prof. Robert H. Grubbs)
1998–2002 Assistant Professor, Ewha Womans University, South Korea
2002–    Professor, KAIST, South Korea
研究内容:有機金属触媒を用いたC–H活性化とその合成的手法の開発

論文の概要

アセトニトリル/ジエチルエーテル中FeCl3と林-Jørgensen触媒存在下、種々のアルデヒド1とジオキサゾロン2に対し可視光照射することで、エナンチオ選択的a–アミド化が進行した。本反応は種々のアルデヒド(3a-c)に加え、ヘテロアリールジオキサゾロン(3d)も利用可能であった。また、抗炎症薬Oxaprozinの誘導体(3e)にも適用できた(図 2A)。
続いて、著者らは鉄種による2の活性化機構を調査した(図 2B)[4]。UV-Visスペクトルから、FeCl3は反応系中でFeCl4として存在することが示された。しかしDFT計算の結果から、FeCl4による2の活性化は大きな吸エルゴン過程だと見積もられた(ΔG = 21.1 kcal/mol)。一方で可視光照射下、FeCl4は金属–配位子電荷移動遷移(LMCT)を経てFeCl3を生成する[6]。FeCl3による2の活性化はエネルギー的により有利であり(ΔG = 7.8 kcal/mol)、著者らはFeCl32の活性化に寄与すると予想した。この仮説をもとに著者らは可視光照射の効果を調査した。最適条件(A)は3aを収率71%で与えるが、暗条件では反応はほとんど進行しない。一方、暗所でFeCl2とTBAClからFeCl3を生成させた場合(B)は反応が進行した。以上より、可視光照射によって生成したFeCl32を活性化することが示唆された。
推定反応機構を示す(図 2C)。まず、アルデヒド14から得られるエナミン5がジオキサゾロン2由来の鉄–ナイトレノイドに付加し、ラジカル中間体6を与える。次に、一電子移動(SET)が進行し7が生成した後、加水分解によって所望の3が得られる。他の反応経路も想定できたが、ラジカルクロックおよび環化実験から、本反応機構が支配的だと結論づけられた(詳細は論文参照)。

図2. (A) 最適条件と基質適用範囲 (B) 鉄種と可視光照射の関係の調査 (C) 推定反応機構

以上、ジオキサゾロンと鉄触媒を用いた、アルデヒドのエナンチオ選択的a–アミド化反応の開発に成功した。幅広い官能基に適用することができる本手法を用いた医薬品合成の報告に期待である。

参考文献

  1. (a) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Organic Synthesis Provides Opportunities to Transform Drug Discovery. Nat. Chem. 2018, 10, 383–394. DOI: 10.1038/s41557-018-0021-z (b) Kumar, P.; Dwivedi, N. Proline Catalyzed α-Aminoxylation Reaction in the Synthesis of Biologically Active Compounds. Acc. Chem. Res. 2013, 46, 289–299. DOI: 10.1021/ar300135u (c) Hili, R.; Baktharaman, S.; Yudin, A. K. Synthesis of Chiral Amines Using α‐Amino Aldehydes. Eur. J. Org. Chem.2008, 2008, 5201–5213. DOI: 10.1002/ejoc.200800604 (d) Maity, P.; König, B. Enantio‐ and Diastereoselective Syntheses of Cyclic Cα‐tetrasubstituted α‐amino Acids and Their Use to Induce Stable Conformations in Short Peptides. Biopolymers 2008, 90, 8–27. DOI:10.1002/bip.20902
  2. (a) Rittle, K. E.; Homnick, C. F.; Ponticello, G. S.; Evans, B. E. A Synthesis of Statine Utilizing an Oxidative Route to Chiral Alpha-Amino Aldehydes. J. Org. Chem. 1982, 47, 3016–3018. DOI: 10.1021/jo00136a045 (b) Zhang, J.; Jia, J.; Zeng, X.; Wang, Y.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Chemo‐ and Enantioselective Hydrogenation of α‐Formyl Enamides: An Efficient Access to Chiral α‐Amido Aldehydes.Angew. Chem., Int. Ed. 2019, 58, 11505–11512. DOI: 10.1002/anie.201905263 (c) Abrams, M. L.; Foarta, F.; Landis, C. R. Asymmetric Hydroformylation of Z -Enamides and Enol Esters with Rhodium-Bisdiazaphos Catalysts. J. Am. Chem. Soc. 2014, 136, 14583–14588. DOI: 10.1021/ja507701k (d) List, B. Direct Catalytic Asymmetric α-Amination of Aldehydes. J. Am. Chem. Soc. 2002, 124, 5656–5657. DOI: 10.1021/ja0261325 (e) Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Direct Organo-Catalytic Asymmetric α-Amination of Aldehydes–A Simple Approach to Optically Active α-Amino Aldehydes, α-Amino Alcohols, And α-Amino Acids. Angew.Chem., Int. Ed. 2002, 41, 1790–1793. DOI: 10.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y
  3. Cecere, G.; König, C. M.; Alleva, J. L.; MacMillan, D. W. C. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling. J. Am. Chem. Soc. 2013, 135, 11521–11524. DOI: 10.1021/ja406181e
  4. Tang, J.; Yu, X.; Wang, Y.; Yamamoto, Y.; Bao, M. Interweaving Visible‐Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angew. Chem., Int. Ed. 2021, 60, 16426–16435. DOI: 10.1002/anie.202016234
  5. (a) Hong, S. Y.; Hwang, Y.; Lee, M.; Chang, S. Mechanism-Guided Development of Transition-Metal-Catalyzed C–N Bond-Forming Reactions Using Dioxazolones as the Versatile Amidating Source. Acc. Chem. Res. 2021, 54, 2683–2700. DOI: 10.1021/acs.accounts.1c00198(b) van Vliet, K. M.; de Bruin, B. Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes. ACS Catal. 2020, 10, 4751–4769. DOI: 10.1021/acscatal.0c00961 (c) Hayashi, H.; Uchida, T. Nitrene Transfer Reactions for Asymmetric C–H Amination: Recent Development. Eur. J. Org. Chem. 2020, 2020, 909–916. DOI: 10.1002/ejoc.201901562 (d) Du, B.; Chan, C.-M.; Au, C.-M.; Yu, W.-Y. Transition Metal-Catalyzed Regioselective Direct C–H Amidation: Interplay between Inner- and Outer-Sphere Pathways for Nitrene Cross-Coupling Reactions. Acc. Chem. Res. 2022, 55, 2123–2137. DOI: 10.1021/acs.accounts.2c00283
  6. (a) Kang, Y. C.; Treacy, S. M.; Rovis, T. Iron-Catalyzed C(Sp3)–H Alkylation through Ligand-to-Metal Charge Transfer. Synlett 2021, 32, 1767–1771. DOI: 1055/s-0040-1720388 (b) Dai, Z.-Y.; Zhang, S.-Q.; Hong, X.; Wang, P.-S.; Gong, L.-Z. A Practical FeCl3/HCl Photocatalyst for Versatile Aliphatic C–H Functionalization. Chem Catal. 2022, 2, 1211–1222. DOI: 10.1016/j.checat.2022.03.020
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 渡辺化学工業ってどんな会社?
  2. 細胞表面受容体の機能解析の新手法
  3. 【ケムステSlackに訊いてみた①】有機合成を学ぶオススメ参考書…
  4. 変幻自在にジアゼンへ!アミンを用いたクロスカップリングの開発
  5. γ-チューブリン特異的阻害剤の創製
  6. 元素占いはいかが?
  7. 脈動がほとんどない小型精密ポンプ:スムーズフローポンプQシリーズ…
  8. あなたの体の中の”毒ガス”

注目情報

ピックアップ記事

  1. 試薬の構造式検索 ~便利な機能と使い方~
  2. iphone用サイトを作成
  3. 固体材料の強度と物性評価のための分子動力学法入門
  4. 【25卒 化学業界企業合同説明会 8/29(火)・30(水)・9/5(火)・6(水) Zoomウェビナー開催!】化学系学生のための就活
  5. 「薬草、信じて使うこと」=自分に合ったものを選ぶ
  6. Nature Chemistry:Research Highlight
  7. 【書籍】パラグラフ・ライティングを基礎から訓練!『論理が伝わる 世界標準の「書く技術」』
  8. 化学でもフェルミ推定
  9. ジョージ・フェール George Feher
  10. 野崎 一 Hitoshi Nozaki

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP