[スポンサーリンク]

化学者のつぶやき

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

[スポンサーリンク]

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的αアミド化が開発された。可視光照射により効率的に生じるFeCl3がジオキサゾロンを活性化することが本手法の鍵である。

アルデヒドのエナンチオ選択的α-アミド化

a-アミノカルボニル骨格は医薬品や生物活性物質に頻繁にみられる。中でもα-アミノアルデヒドはペプチドミメティック合成に利用される非天然型アミノ酸の前駆体として重宝されてきた[1]。その有用性から、これまでにα-アミノ酸を出発物質とするキラルプール法やエナミドの変換法など、多様な不斉α-アミノアルデヒド合成法が開発されてきた(図1A)[2]。窒素ラジカルを利用した先駆的な例として、MacMillanらはアルデヒドの触媒的ラジカル型不斉a-アミノ化を報告した(図1B)[3]。本手法はキラルなアミン触媒とアルデヒドから生成したエナミンが、カルバマート(窒素源)から生成したラジカルと反応し、高エナンチオ選択的にa-アミノアルデヒドを与える。しかし、使用できる窒素源は、感光性のジニトロフェニルスルホニルオキシ(ODNs)基をもつカルバマートに限られていた。
本論文著者のChangらは上述のカルバマートと異なる窒素ラジカル前駆体として、カルボン酸から調製可能なジオキサゾロンに着目した(図1C)。ジオキサゾロンは金属触媒により高反応性の金属ナイトレノイドを生成し[4]、種々のC–N結合形成反応に利用される[5]。今回、著者らは鉄触媒存在下ジオキサゾロンを活性化し、キラルなエナミンと反応させることで、エナンチオ選択的なアルデヒドのα-アミド化が進行することを見いだした(図1D)。

図1. (A)α-アミノアルデヒドの合成法 (B) アルデヒドのα-アミノ化 (C) ジオキサゾロン/鉄触媒を用いた先行研究 (D) 本研究

 

“Visible-Light-Promoted Enantioselective α-Amidation of Aldehydes by Harnessing Organo-Iron Dual Catalysis”
Hore, S.; Jeong, J.; Kim, D.; Chang, S. J. Am. Chem. Soc. 2024, 146, 22172–22179. DOI: 10.1021/jacs.4c07884

論文著者の紹介

研究者:Sukbok Chang (研究室HP)
研究者の経歴:
1985 B.Sc., Korea University, South Korea
1987 M.Sc., Korea Advanced Institute of Science and Technology (KAIST), South Korea (Prof. Sunggak Kim)
1996 Ph.D., Harvard University, USA (Prof. Eric N. Jacobsen)
1996–1998   Postdoc, California Institute of Technology, USA (Prof. Robert H. Grubbs)
1998–2002 Assistant Professor, Ewha Womans University, South Korea
2002–    Professor, KAIST, South Korea
研究内容:有機金属触媒を用いたC–H活性化とその合成的手法の開発

論文の概要

アセトニトリル/ジエチルエーテル中FeCl3と林-Jørgensen触媒存在下、種々のアルデヒド1とジオキサゾロン2に対し可視光照射することで、エナンチオ選択的a–アミド化が進行した。本反応は種々のアルデヒド(3a-c)に加え、ヘテロアリールジオキサゾロン(3d)も利用可能であった。また、抗炎症薬Oxaprozinの誘導体(3e)にも適用できた(図 2A)。
続いて、著者らは鉄種による2の活性化機構を調査した(図 2B)[4]。UV-Visスペクトルから、FeCl3は反応系中でFeCl4として存在することが示された。しかしDFT計算の結果から、FeCl4による2の活性化は大きな吸エルゴン過程だと見積もられた(ΔG = 21.1 kcal/mol)。一方で可視光照射下、FeCl4は金属–配位子電荷移動遷移(LMCT)を経てFeCl3を生成する[6]。FeCl3による2の活性化はエネルギー的により有利であり(ΔG = 7.8 kcal/mol)、著者らはFeCl32の活性化に寄与すると予想した。この仮説をもとに著者らは可視光照射の効果を調査した。最適条件(A)は3aを収率71%で与えるが、暗条件では反応はほとんど進行しない。一方、暗所でFeCl2とTBAClからFeCl3を生成させた場合(B)は反応が進行した。以上より、可視光照射によって生成したFeCl32を活性化することが示唆された。
推定反応機構を示す(図 2C)。まず、アルデヒド14から得られるエナミン5がジオキサゾロン2由来の鉄–ナイトレノイドに付加し、ラジカル中間体6を与える。次に、一電子移動(SET)が進行し7が生成した後、加水分解によって所望の3が得られる。他の反応経路も想定できたが、ラジカルクロックおよび環化実験から、本反応機構が支配的だと結論づけられた(詳細は論文参照)。

図2. (A) 最適条件と基質適用範囲 (B) 鉄種と可視光照射の関係の調査 (C) 推定反応機構

以上、ジオキサゾロンと鉄触媒を用いた、アルデヒドのエナンチオ選択的a–アミド化反応の開発に成功した。幅広い官能基に適用することができる本手法を用いた医薬品合成の報告に期待である。

参考文献

  1. (a) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Organic Synthesis Provides Opportunities to Transform Drug Discovery. Nat. Chem. 2018, 10, 383–394. DOI: 10.1038/s41557-018-0021-z (b) Kumar, P.; Dwivedi, N. Proline Catalyzed α-Aminoxylation Reaction in the Synthesis of Biologically Active Compounds. Acc. Chem. Res. 2013, 46, 289–299. DOI: 10.1021/ar300135u (c) Hili, R.; Baktharaman, S.; Yudin, A. K. Synthesis of Chiral Amines Using α‐Amino Aldehydes. Eur. J. Org. Chem.2008, 2008, 5201–5213. DOI: 10.1002/ejoc.200800604 (d) Maity, P.; König, B. Enantio‐ and Diastereoselective Syntheses of Cyclic Cα‐tetrasubstituted α‐amino Acids and Their Use to Induce Stable Conformations in Short Peptides. Biopolymers 2008, 90, 8–27. DOI:10.1002/bip.20902
  2. (a) Rittle, K. E.; Homnick, C. F.; Ponticello, G. S.; Evans, B. E. A Synthesis of Statine Utilizing an Oxidative Route to Chiral Alpha-Amino Aldehydes. J. Org. Chem. 1982, 47, 3016–3018. DOI: 10.1021/jo00136a045 (b) Zhang, J.; Jia, J.; Zeng, X.; Wang, Y.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Chemo‐ and Enantioselective Hydrogenation of α‐Formyl Enamides: An Efficient Access to Chiral α‐Amido Aldehydes.Angew. Chem., Int. Ed. 2019, 58, 11505–11512. DOI: 10.1002/anie.201905263 (c) Abrams, M. L.; Foarta, F.; Landis, C. R. Asymmetric Hydroformylation of Z -Enamides and Enol Esters with Rhodium-Bisdiazaphos Catalysts. J. Am. Chem. Soc. 2014, 136, 14583–14588. DOI: 10.1021/ja507701k (d) List, B. Direct Catalytic Asymmetric α-Amination of Aldehydes. J. Am. Chem. Soc. 2002, 124, 5656–5657. DOI: 10.1021/ja0261325 (e) Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Direct Organo-Catalytic Asymmetric α-Amination of Aldehydes–A Simple Approach to Optically Active α-Amino Aldehydes, α-Amino Alcohols, And α-Amino Acids. Angew.Chem., Int. Ed. 2002, 41, 1790–1793. DOI: 10.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y
  3. Cecere, G.; König, C. M.; Alleva, J. L.; MacMillan, D. W. C. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling. J. Am. Chem. Soc. 2013, 135, 11521–11524. DOI: 10.1021/ja406181e
  4. Tang, J.; Yu, X.; Wang, Y.; Yamamoto, Y.; Bao, M. Interweaving Visible‐Light and Iron Catalysis for Nitrene Formation and Transformation with Dioxazolones. Angew. Chem., Int. Ed. 2021, 60, 16426–16435. DOI: 10.1002/anie.202016234
  5. (a) Hong, S. Y.; Hwang, Y.; Lee, M.; Chang, S. Mechanism-Guided Development of Transition-Metal-Catalyzed C–N Bond-Forming Reactions Using Dioxazolones as the Versatile Amidating Source. Acc. Chem. Res. 2021, 54, 2683–2700. DOI: 10.1021/acs.accounts.1c00198(b) van Vliet, K. M.; de Bruin, B. Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes. ACS Catal. 2020, 10, 4751–4769. DOI: 10.1021/acscatal.0c00961 (c) Hayashi, H.; Uchida, T. Nitrene Transfer Reactions for Asymmetric C–H Amination: Recent Development. Eur. J. Org. Chem. 2020, 2020, 909–916. DOI: 10.1002/ejoc.201901562 (d) Du, B.; Chan, C.-M.; Au, C.-M.; Yu, W.-Y. Transition Metal-Catalyzed Regioselective Direct C–H Amidation: Interplay between Inner- and Outer-Sphere Pathways for Nitrene Cross-Coupling Reactions. Acc. Chem. Res. 2022, 55, 2123–2137. DOI: 10.1021/acs.accounts.2c00283
  6. (a) Kang, Y. C.; Treacy, S. M.; Rovis, T. Iron-Catalyzed C(Sp3)–H Alkylation through Ligand-to-Metal Charge Transfer. Synlett 2021, 32, 1767–1771. DOI: 1055/s-0040-1720388 (b) Dai, Z.-Y.; Zhang, S.-Q.; Hong, X.; Wang, P.-S.; Gong, L.-Z. A Practical FeCl3/HCl Photocatalyst for Versatile Aliphatic C–H Functionalization. Chem Catal. 2022, 2, 1211–1222. DOI: 10.1016/j.checat.2022.03.020
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 学生実験・いまむかし
  2. アルケンのエナンチオ選択的ヒドロアリール化反応
  3. 武装抗体―化学者が貢献できるポイントとは?
  4. 自動車排ガス浄化触媒って何?
  5. 第26回ケムステVシンポ「創薬モダリティ座談会」を開催します!
  6. 芳香族トリフラートからアリールラジカルを生成する
  7. 官能基化オレフィンのクロスカップリング
  8. 天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる…

注目情報

ピックアップ記事

  1. アレーン三兄弟をキラルな軸でつなぐ
  2. 植物毒素の全合成と細胞死におけるオルガネラの現象発見
  3. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウム
  4. 【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~
  5. ナノチューブを簡単にそろえるの巻
  6. 有機合成化学協会誌2024年5月号:「分子設計・編集・合成科学のイノベーション」特集号
  7. エステルをアルデヒドに変換する新手法
  8. 第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授
  9. サム・ゲルマン Samuel H. Gellman
  10. ペプチドの草原にDNAの花を咲かせて、水中でナノスケールの花畑をつくる!?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年1月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

アザボリンはニ度異性化するっ!

1,2-アザボリンの光異性化により、ホウ素・窒素原子を含むベンズバレンの合成が達成された。本異性化は…

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP