[スポンサーリンク]

化学者のつぶやき

太陽光変換効率10%での人工光合成を達成

太陽光エネルギーの効率的な変換は21世紀において最も重要な研究テーマの一つであり、世界中で高効率化の競争が行われています。特に人工光合成、つまり水とCO2のみから太陽光エネルギーで有機物に変換する反応はまさに夢の反応の一つです。この反応は世界に先駆けて日本で初めて実証されましたが、残念なことに変換効率は0.04%程度でした。[1]

今回、パーソナライズド・エナジー構想で知られるHarvard大、D. Nocera教授のグループが中心となり、太陽光変換効率が7.1-9.7%でポリヒドロキシ酪酸、2-プロパノールとC4以上のアルコールを選択的に生成が可能なシステムを開発しScience誌に掲載されました。

“Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352 (6290), 1210-1213.”

 

報告された人工光合成の仕組み

今回の報告では2種類の電極(Co-P合金とリン酸コバルト)による水分解によって得られるH2を使い、Ralstonia eutrophaという菌によってCO2を有機物に変換しています。[2] 下の図1に示すように、水分解(H2O => H+ O2)は陽極側で水が酸化され(2H2O => 4H+ O+ 4e)、この際生じる電子が陰極側へ運ばれH+を還元し水素を生成(4H++4e=>2H2)します。つまり、水素生成量は回路に流れる電流と相関があり、図2に示すようにCo-P合金は他の電極に比べ(絶対値が)大きい電流が得られており、水素生成活性が高い事が分かります。これによって大量のH2を作り出し、細菌による有機物合成を促進させることができます。また驚くことに、少なくとも16日間はCo-P電極の活性低下はほぼ見られませんでした。

1

図1.電極を用いた水分解(文献[2]のFigure 1Aより)

2

図2.異なる電極によるバイアス電圧に対して得られる電流値(文献[2]のFigure 1Bより)

細菌による有機物生成を最大化する

Co-P合金の水素生成活性が高い事は図2に示す通りですが、この電極最大の特徴はH2とCO2から有機物を生成する細菌に対して”優しい”ことです。図1に示す様に陰極でH+が還元されるのですがこれによって水素だけでなく、細菌を殺してしまうH2O2も生成される可能性があります。しかも水素酸化還元電位に対してH2O2生成(4H+ 4e– + O=> 2H2O2)の酸化還元電位は+0.5 eVなので、H2O2生成を抑えながらH2を生成するが非常に難しい事が分かります。ところが図3に示すようにCo-P合金電極からは全くH2O2が生成されていません。これによってCo-P電極上の細菌がH2O2によるダメージを受けず、高活性が長期間維持できます。また細菌の種類によりH2とCO2を、ポリヒドロキシ酪酸、2-プロパノールとC4以上のアルコールを効率40-50%程度で選択的に生成できます。

3

図3.異なる電極によって得られるH2O2(文献[2]のFigure 1Cより)

既存の太陽電池につなげば最大約10%の効率

このシステムにおいて、投入される電気エネルギーに対して得られる有機物の合計エネルギーの割合が最大54%になるので、既存の太陽電池(太陽光変換効率:18%)にこのシステムをつなげば太陽光エネルギーに対して9.7%の効率で有機物が得られます。今後、電極の改良によるさらなる高活性化や細菌の選択による選択性の向上、さらに生成物を連続的に分離できるシステムの開発が期待されます。

参考文献

  1.  Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, T. M.; Tanaka, H.; Kajino, T., Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J. Am. Chem. Soc. 2011, 133 (39), 15240-15243. DOI:10.1021/ja204881d
  2. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G., Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352 (6290), 1210-1213. DOI:10.1126/science.aaf5039

関連書籍

関連リンク

The following two tabs change content below.

関連記事

  1. ノーベル化学賞メダルと科学者の仕事
  2. 近況報告PartII
  3. 親水性ひも状分子を疎水性空間に取り込むナノカプセル
  4. 化学のあるある誤変換
  5. 100年前のノーベル化学賞ーフリッツ・ハーバーー
  6. 3Dプリンタとシェールガスとポリ乳酸と
  7. 君には電子のワルツが見えるかな
  8. ベンゼン環が壊れた?!ー小分子を活性化するー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「遷移金属を用いてタンパク質を選択的に修飾する」ライス大学・Ball研より
  2. カチオン重合 Cationic Polymerization
  3. 個性あるTOC その②
  4. ククルビットウリルのロタキサン形成でClick反応を加速する
  5. 日本語で得る学術情報 -CiNiiのご紹介-
  6. ナノチューブ団子のときほぐしかた [テキサスMRD社の成果]
  7. 劣性遺伝子押さえ込む メンデルの法則仕組み解明
  8. 【速報】2017年のノーベル生理学・医学賞は「概日リズムを制御する分子メカニズムの発見」に!
  9. START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE
  10. 進化する カップリング反応と 応用展開

関連商品

注目情報

注目情報

最新記事

論文・学会発表に役立つ! 研究者のためのIllustrator素材集: 素材アレンジで描画とデザインをマスターしよう!

概要Adobe Illustratorを用いたイラスト作成の入門書。すぐに使えるイラスト素材…

シアノヒドリンをカルボン酸アミドで触媒的に水和する

第189回目のスポットライトリサーチは、神田 智哉(かんだ ともや)さんにお願いしました。神…

チオカルバマートを用いたCOSのケミカルバイオロジー

チオカルバマート型硫化水素ドナー分子を用いた硫化カルボニル(COS)の生理学的機能の研究が行われた。…

触媒的不斉交差ピナコールカップリングの開発

第188回目のスポットライトリサーチは、竹田 光孝(たけだ みつたか)さんにお願いしました。…

研究者のためのCG作成術④(レンダリング編)

Naphtです。研究者のためのCG作成術①、②、③に続き、研究者向けのCGの作り方について紹介しよう…

CSJジャーナルフォーラム「ジャーナルの将来像を考える」

いよいよ今年も日化年会の期日が迫って参りました!ケムステでも例年通り、参加者の方々に有益な各種企画の…

Chem-Station Twitter

PAGE TOP