[スポンサーリンク]

化学者のつぶやき

イミニウム励起触媒系による炭素ラジカルの不斉1,4-付加

[スポンサーリンク]

2017年、カタルーニャ化学研究所・Paolo Melchiorreらは、イミニウム有機触媒系を可視光励起することで強力な酸化力が発揮される事実を見いだした。これを活用し、熱的反応では進行しない形式の不斉触媒反応(アルキルシランから酸化的に系中生成させたアルキルラジカルのエナールへの不斉1,4-付加)を達成した。

“Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals”
Silvi, M.; Verrier, C.; Rey, Y. P.; Buzzetti, L.; Melchiorre, P.* Nat. Chem. 2017, 9, 868-873. doi:10.1038/nchem.2748

問題設定

有機触媒の代表格として用いられてきたイミニウム型不斉触媒は、過去様々な反応へと適用されてきた。しかしながらその反応性は全て基底状態のものである。事前調製されたイミニウムイオンを励起させて化学反応へと用いた報告自体は存在する[1]ものの、不斉触媒領域でその現象を活用した例はこれまでに存在しない。

技術や手法の肝

著者らはエナミン触媒+可視光励起+還元敏感基質の組み合わせにて、アルデヒドの可視光駆動型不斉α―アルキル化反応を継続的に報告している[2]。これと表裏一体の関係にあるイミニウム触媒+可視光励起+酸化敏感基質の組み合わせを試す発想を起点としている。

想定触媒サイクルは下図のとおり。可視光励起されたイミニウムI*(π-π*遷移、>400 nm)がアルキルシラン3を酸化してアルキルラジカルIVを生じ、これが不斉ラジカルカップリングを起こした後に、エナミンVの加水分解を介することで反応が進行する。

冒頭論文より引用

炭素ラジカル前駆体としてはアルキルトリメチルシランを用いているが、これは

  1. 比較的低い酸化ポテンシャルを持つ[3]
  2. ラジカルカチオンが弱求核剤(アセトニトリル程度)共存下に速やかに脱シリル化[4]されてアルキルラジカルを不可逆的に与えるため、逆電子移動を回避出来る

という反応設計上の利点を持つ。

主張の有効性検証

① 触媒構造の最適化

シンナムアルデヒドとベンジルTMSを基質に条件検討を行なっている。アミン触媒の構造は、励起イミニウムI*がアルキルシランを酸化(Eox = +1.74V, vs Ag/Ag+)するに十分な酸化ポテンシャルを持ちつつ、アミン触媒自体がI*を還元しないもので無くてはならない。この都合から、ある程度酸化されづらい2級アミン触媒を用いる必要がある。

MacMillan触媒(20 mol%)の共存下に反応を420 nm LED光照射で反応を行なうと、望む1,4-付加体が79%収率で得られたが、不斉収率は満足いくものではなかった。一方で林-Jorgensen触媒骨格を基盤に構造展開を行なったところ、無修飾型ピロリジン触媒の活性は低いことが分かった。これは触媒自体がアルキルシランよりも酸化されやすく(Eox = +1.57V)、自己酸化で破壊されていることに起因する(NMR実験より確認)。フッ素導入により酸化耐性を向上させた触媒の使用により、収率および不斉収率の向上を達成し、下記ハイライト触媒を最適なものとして同定した。

② 基質一般性について

ベンジル基を求核剤として用いること自体がそもそも難しい都合、同形式のエナールへの不斉1,4-付加は報告例が存在せず、本報告が初となる。基質一般性の特徴をまとめると以下の通り。

  1. β-アルキルエナールは適用不可(おそらくイミニウム種が可視光吸収帯を有しないため)
  2. 3級炭素ラジカル付加を経る4級炭素構築もOK
  3. 電子豊富環またはヘテロ環のベンジル基質もOK
  4. ヘテロ原子α位炭素ラジカルの不斉付加もOK

③ メカニズムに関する示唆

上記の触媒サイクルをサポートする目的で、下記の実験事実を集めて論じている。

冒頭論文より引用

  1. MacMillan触媒とシンナムアルデヒドを縮合させたイミニウムカチオンは、僅かながら420nm前後に可視光吸収帯を持つ(上図a)。
  2. 光非照射下もしくは触媒非存在下には反応が進行しない。
  3. TEMPO共存下もしくは酸素雰囲気下では反応が阻害されることから、ラジカル機構が示唆される。
  4. 被励起種であるイミニウムBF4塩を単離して結晶構造を明らかにしている。特にフッ素置換ピロリジン構造では、gem-フッ素導入による特徴的な配座制御効果[5]の様子が観測される(上図b)。
  5. イミニウムの励起時酸化ポテンシャルはEred* = +2.3-2.4Vと見積っている(CVおよび蛍光波長測定から算出)。これは触媒サイクルのレドックス熱力学を合理的に説明できる値。
  6. ベンジルTMSはイミニウムカチオンを濃度依存的に消光する。
  7. Z-シンナムアルデヒドを使って反応を行なっても、E-シンナムアルデヒドと同じ立体の生成物が得られる。また回収原料はすべてE体になる→イミニウムのE/Z異性化は大変速い。
  8. ベンジル基二量化体の生成は観測されない、ベンジルラジカルの低求核性、イミニウムイオンはラジカルをトラップしづらい[6]、ベンジルTMSからα-イミニルラジカルカチオンへのSETは吸エルゴン的(上図c)、反応量子収率が低い(Φ=0.05)などの事実から、ラジカル連鎖機構はunlikely pathwayと結論づけられている。

議論すべき点

  • 光触媒相当成分が常にその機能を発揮し続けるのではなく、基質と複合体を組んで初めて可視光レドックス能を持つようになる設計。以前取りあげたMeggersのキラルIr光触媒系もこの特性を有する。選択性発現や精密な光触媒化学系の実現にとって、今後極めて重要になる触媒設計概念といえる。
  • 当然ながら有機触媒系の方が安価であるし、基質を共有結合で固定できることによる不斉空間ロバストネスの点でもIr系より魅力がある。触媒の構造展開も幅広く行えるため、かなり応用範囲が広そうである。
  • 収率は総じて良好である。2つのラジカル活性種を近傍で同時に出す機構であるため、失活防止・収率向上・立体障害克服に有利に働いていると考えられる。

未解決問題へのアプローチ

  • β-アルキルエナールが不適用になるのは理屈を考えても致し方ないところだろうが、たとえばより短波長のUV照射、もしくは他の光触媒によるエネルギー移動過程の介在などで解決出来ないか。

参考文献

  1. (a) Mariano, P. S. Tetrahedron 1983, 39, 3845. doi:10.1016/S0040-4020(01)90889-0 (b) Mariano, P. S. Acc. Chem. Res. 1983, 16, 130. DOI: 10.1021/ar00088a003
  2. (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750. doi:10.1038/nchem.1727 (b) Silvi, M.; Arceo, E.; Jurberg, I. D.; Cassani, C.; Melchiorre, P. J. Am. Chem. Soc. 2015, 137, 6120. DOI: 10.1021/jacs.5b01662 (c) Bahamonde, A.; Melchiorre, P. J. Am. Chem. Soc. 2016, 138, 8019. DOI: 10.1021/jacs.6b04871
  3. Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265. DOI: 10.1021/cr0680843
  4. Dockery, K. P. et al. J. Am. Chem. Soc. 1997, 119, 1876. DOI: 10.1021/ja963197x
  5. Zimmer, L. E.; Sparr, C.; Gilmour, R. Angew. Chem. Int. Ed. 2011, 50, 11860. doi:10.1002/anie.201102027
  6. Murphy, J. J.; Bastida, D.; Paria, S.; Fagnoni, M.; Melchiorre, P. Nature 2016, 532, 218. doi:10.1038/nature17438

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 力学的エネルギーで”逆”クリック!
  2. 単一分子の電界発光の機構を解明
  3. マテリアルズ・インフォマティクスの基礎知識とよくある誤解
  4. Goodenough教授の素晴らしすぎる研究人生
  5. カーボンナノベルト合成初成功の舞台裏 (1)
  6. フラスコ内でタンパクが連続的に進化する
  7. 【サステナブルなものづくり】 マイクロ波の使い方セミナー 〜実験…
  8. いつも研究室で何をしているの?【一問一答】

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 森田・ベイリス・ヒルマン反応 Morita-Baylis-Hillman Reaction
  2. アメリカで Ph. D. を取る –研究室に訪問するの巻–
  3. ウォール・チーグラー臭素化 Wohl-Ziegler Bromination
  4. 臭素もすごいぞ!環状ジアリール-λ3-ブロマンの化学
  5. かぶれたTシャツ、原因は塩化ジデシルジメチルアンモニウム
  6. クロロ[(1,3-ジメシチルイミダゾール-2-イリデン)(N,N-ジメチルベンジルアミン)パラジウム(II)]:Chloro[(1,3-dimesitylimidazol-2-ylidene)(N,N-dimethylbenzylamine)palladium(II)]
  7. 多環式骨格を華麗に構築!(–)-Zygadenineの不斉全合成
  8. ウィリアム・ロウシュ William R. Roush
  9. 不安定な合成中間体がみえる?
  10. 製薬会社5年後の行方

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年9月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

超塩基に匹敵する強塩基性をもつチタン酸バリウム酸窒化物の合成

第604回のスポットライトリサーチは、東京工業大学 元素戦略MDX研究センターの宮﨑 雅義(みやざぎ…

ニキビ治療薬の成分が発がん性物質に変化?検査会社が注意喚起

2024年3月7日、ブルームバーグ・ニュース及び Yahoo! ニュースに以下の…

ガラスのように透明で曲げられるエアロゲル ―高性能透明断熱材として期待―

第603回のスポットライトリサーチは、ティエムファクトリ株式会社の上岡 良太(うえおか りょうた)さ…

有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒素芳香族化合物・ジベンゾクリセン・ロタキサン・近赤外光材料

有機合成化学協会が発行する有機合成化学協会誌、2024年3月号がオンライン公開されています。…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part3

日本化学会年会の付設展示会に出展する企業とのコラボです。第一弾・第二弾につづいて…

ペロブスカイト太陽電池の学理と技術: カーボンニュートラルを担う国産グリーンテクノロジー (CSJカレントレビュー: 48)

(さらに…)…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part2

前回の第一弾に続いて第二弾。日本化学会年会の付設展示会に出展する企業との…

CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」

日本化学会第104春季年会(2024)で開催されるシンポジウムの一つに、CIPセッション「世界に躍進…

日本化学会 第104春季年会 付設展示会ケムステキャンペーン Part1

今年も始まりました日本化学会春季年会。対面で復活して2年めですね。今年は…

マテリアルズ・インフォマティクスの推進成功事例 -なぜあの企業は最短でMI推進を成功させたのか?-

開催日:2024/03/21 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP