[スポンサーリンク]

化学者のつぶやき

顕微鏡で有機分子の形が見えた!

[スポンサーリンク]

(画像は論文より転載)

The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy.
L. Gross et al. Science 2009, 325, 5944. DOI: 10.1126/science.1176210

そこら中にある分子の形が、人間の目で直接見えるようになったら――化学者が長年抱いていたこの夢が、徐々に現実のものとなりつつあります。

このほどIBMの研究者によって、ベンゼン環が5つつながった分子・ペンタセン(pentacene)の顕微鏡像が撮影されました。上図のごとく、化学結合まで鮮明に観測され、分子の形が分子模型を見るかのごとくはっきり分かります。


彼らは非接触型原子間力顕微鏡(Non-contact Atomic Force Microscopy; NC-AFM)という分析機器を用い、この画像の撮影に成功しました。

AFMの原理自体は、それほど難しいものではありません。
試料表面を探針(tip)でなぞると、試料との間に原子間力(引力)が生じます。その力の大きさをカンチレバー(Cantilever)の”たわみ”とし
て検出します。たわみ具合はレーザー光の反射角から精密に見積もることができます。このようにして、試料表面の凹凸を画像化しているのです(下図)。
同様
の測定ができる走査型電子顕微鏡(SEM)、走査型トンネル顕微鏡(STM)と比較して、導電性のない材料にも適用可能な利点を持ちます。通常、導電性に乏しい有機化合物を観測するためには、重要な特性といえます。

AFM_1.gif
(画像:Aglient.com)

NC-AFMでは、探針を上下振動させて走査し、探針-試料間距離に応じて変化する振動パラメータ(振幅、振動数、位相など)の変化を検出します。分解能などさまざまな点で接触型よりも優れており、既に原子レベルの分解能を誇ります。

しかし冒頭画像のごとく化学結合までをも可視化するには、それ以上、すなわちサブアトミックスケールにまで分解能を上げねばなりません。

IBMグループは、一酸化炭素(CO)を先端に結合させた探針を使うことで、この問題を解決しました。
AFMの分解能は、探針の先端径に大きく依存することが知られています。その点、COは究極に細い「分子サイズの探針」とみなすことができます。さらに、被占分子軌道(化学結合)が存在する場所においては、CO分子との間にパウリの排他原理に基づく斥力が働きます。これを検出することで、化学結合までをも可視化できるようになった、というわけです。

AFM_pentacene_2.jpg

これほどまでに鮮明なAFM画像を撮影するには、超高真空・極低温で測定を行う必要があります。非エキスパートでも軽々しく撮影できる代物でない、というのが少し残念ではあります。

しかし改良が進んで使いやすくなれば、有機化学者にとってはまさしく“夢の技術”たりえるのではないでしょうか。今後の発展を心待ちにしたいと思います。

関連動画

IBMによる広報動画

関連書籍

原子間力顕微鏡のすべて―原子や分子を見て動かす (K BOOKS)
森田 清三
工業調査会
売り上げランキング: 754137
有機分子のSTM AFM
有機分子のSTM AFM

posted with amazlet at 09.08.30
共立出版
売り上げランキング: 690222
はじめてのナノプローブ技術 (ビギナーズブックス (18))
森田 清三
工業調査会
売り上げランキング: 386547
おすすめ度の平均: 4.0

4 SPMの入門書

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. カーボン系固体酸触媒
  2. 二つのCO2を使ってアジピン酸を作る
  3. ChemDrawの使い方【作図編③:表】
  4. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  5. なんと!アルカリ金属触媒で進む直接シリル化反応
  6. アニリン版クメン法
  7. 近況報告PartIV
  8. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. NMR in Organometallic Chemistry
  2. ナノチューブを簡単にそろえるの巻
  3. 藤田 誠 Makoto Fujita
  4. グァンビン・ドン Guangbin Dong
  5. TPAP(レイ・グリフィス)酸化 TPAP (Ley-Griffith)Oxidation
  6. 「溶融炭酸塩基の脱プロトン化で有用物質をつくる」スタンフォード大学・Kanan研より
  7. 秋の味覚「ぎんなん」に含まれる化合物
  8. 企業の組織と各部署の役割
  9. 白血病治療新薬の候補物質 京大研究グループと日本新薬が開発
  10. 質量分析で使うRMS errorって?

関連商品

注目情報

注目情報

最新記事

光で2-AGの量を制御する

ケージド化合物を用いた2-AG量の操作法が初めて開発された。2-AG量を時空間的に操作することができ…

葉緑素だけが集積したナノシート

第235回のスポットライトリサーチは、立命館大学 民秋研究室で博士研究員をされていた、庄司 淳(しょ…

第38回「分子組織化の多様な側面を理解する」Neil Champness教授

長らく更新が止まっていましたが、海外化学者インタビュー再開しました。Nature Chemistry…

排ガス原料のSAFでデリバリーフライトを実施

ANAは日本時間の10月30日、排ガスを原料とするSustainable Aviation Fuel…

“つける“と“はがす“の新技術―分子接合と表面制御

お申込み・詳細はこちら日程2020年1月9日(木)・10日(金)定員20名  先着順…

【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキサジン環に苦しみ、笑った日々~

日産化学は、コア技術である「精密有機合成」や「生物評価」を活かして自社独自開発の…

Chem-Station Twitter

PAGE TOP