[スポンサーリンク]

化学者のつぶやき

はじめから組み込んじゃえ!Ambiguine P の短工程合成!

[スポンサーリンク]

Ambiguine Pの特徴的な6-5-6-7-6多環縮環骨格を、生合成を模倣したカスケード環化反応により一挙に構築することに成功した。この戦略により、市販品からわずか7工程での全合成を達成した。

Ambiguine Pの骨格構築

Ambiguine P (1)は、海洋シアノバクテリアから単離された抗菌活性を示すインドールテルペノイドの一種である (図1A)[1, 2]。本化合物の構造的特徴として、類例のない5環性の多環縮環骨格とそこに含まれるシクロヘプタトリエン(E環)が挙げられる。本化合物の合成においては、高度に縮環した骨格を構築しつつ、酸化度の高い歪んだE環をいかに効率的に構築するかが鍵となる。

1は、2019年にSarpong およびRawalの両研究グループによって全合成が達成されている (図1B)[2,3]。両グループは共通して、インドール部位 (AB環)とテルペン部位 (D環)に相当するフラグメントをC3–C10位間で連結した後、C環およびE環を構築する戦略を採用している。いずれも独自の方法論により効率的な全合成を実現しているが、テルペン部位の構築に多工程を要する点や、炭素のみから成るE環の構築においてヘテロ原子官能基を足がかりとした環化法や当該官能基の除去を含む酸化段階の調整が必要である点など、改良の余地が残されていた。

今回Liらは、CD環部に相当するモノテルペン側鎖とE環にあたる7員環を有するインドール誘導体2を鍵中間体として設定することで、ヘテロ原子官能基に依存しない骨格構築戦略を採用し、市販品から7工程での1の全合成を達成した。具体的には、1の生合成経路の知見を参考に[4]、インドール誘導体2からCope転位、Prins反応、Friedel–Craftsアルキル化を組み合わせたカスケード環化反応を駆使し、6-5-6-7-6縮環構造を有する6を合成した (図1C)。この戦略により、従来法で課題とされていたインドール骨格への逐次的な環構築に起因する工程数の増加を回避し、Ambiguine P (1)の短工程合成を実現した。

図1. (A) Ambiguine Pの構造 (B) 先行研究 (C) 本研究

 

“Concise Total Synthesis of Ambiguine P”
Fei, Y.; Fan, B.; Liu, Z.; Ba, M.; Cui, Z.; Yang, P.; Li, A J. Am. Chem. Soc. 2025, 147, 22, 18391–18396

DOI: 10.1021/jacs.5c00395

論文著者の紹介

研究者:Ang Li (李昂) (研究室HP, ケムステ)
研究者の経歴:
2004 B.Sc. Peking University, China (Prof. Zhen Yang)
2009 Ph. D. The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
2010 Research fellow, Institute of Chemical and Engineering, Singapore (Prof. K. C. Nicolaou)
2010– Professor, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China

研究内容:天然物の全合成研究
研究者:Peng Yang (杨鹏)
研究者の経歴:
2012 B.Sc. Zhengzhou University, China
2017 Ph. D. Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China (Prof. Ang Li)
2017–2020 WuXi AppTec, China
2021– Zhengzhou University, China

研究内容:天然物の全合成研究

論文の概要

1の合成経路を示す(図2A)。著者らはまず、市販のシクロヘプタノンから出発し、ジメチル化とそれに続くFischerインドール合成により7を合成した。次に、7のC3位クロロ化を起点にC10,11位の酸化により8とした後、アルキル化によってC3位にゲラニル基を導入し、2工程収率63%で鍵中間体であるインドール誘導体2を合成した。得られた2に対し、Mg(NTf2)2存在下で加熱すると、Cope転位、Prins反応、Friedel–Craftsアルキル化が連続的に進行し、6-5-6-7-6縮環構造をもつ6が得られた。その後、著者らは骨格酸化段階を調節することで1の全合成を目指した。具体的には、6のC10,11位をDDQを用いて再度酸化して10とした後、DIPEA存在下でtBuOClを作用させ、C3位クロロ化とその脱離により生じた11の異性化により12を得た。最後に、Rawal[5]らの手法に倣ってC15位を立体選択的にヒドロキシル化することで、Ambiguine P (1)の全合成を達成した。

また、2のカスケード環化反応では、目的の6に加え、その立体異性体である6’も副生成物として得られた(図2B)。著者らは、6’の生成機構について、以下のように考察している(図2C)。すなわち、2からCope転位反応により4が生成した後、異性化することで13が生成する。この13が、再度異性化する際にC11位がエピ化した4’となり、6’へと至る経路が提案された。このジアステレオ選択性の制御を目的に、著者らはルイス酸の検討を行った (Table 1)。その結果、Mg(NTf2)2を用いた際に高いジアステレオ選択性で6が得られることを見いだした。

図2. (A) Ambiguine P (1)の全合成 (B) ジアステレオマー6の合成経路 (C) ジアステレオマー6’の合成経路

 

以上のように、本研究では、Ambiguine P (1)の短工程合成が達成された。テルペン部位が「組み込まれた」インドールに着目し、生合成経路を模倣したカスケード環化反応により6-5-6-7-6縮環構造を一挙に構築した点は、極めて巧妙で注目に値する。

参考文献

  1. Walton, K.; Berry, J. Indole Alkaloids of the Stigonematales (Cyanophyta): Chemical Diversity, Biosynthesis and Biological Activity. Mar. Drugs 2016, 14, 73. DOI: 10.3390/md14040073
  2. Xu, J.; Rawal, V. H. Total Synthesis of (−)-Ambiguine P. J. Am. Chem. Soc. 2019, 141, 4820–4823. DOI: 10.1021/jacs.9b01739
  3. Johnson, R. E.; Ree, H.; Hartmann, M.; Lang, L.; Sawano, S.; Sarpong, R. Total Synthesis of Pentacyclic (−)-Ambiguine P Using Sequential Indole Functionalizations. J. Am. Chem. Soc. 2019, 141, 2233–2237. DOI: 10.1021/jacs.8b13388
  4. (a) Li, S.; Lowell, A. N.; Yu, F.; Raveh, A.; Newmister, S. A.; Bair, N.; Schaub, J. M.; Williams, R. M.; Sherman, D. H. Hapalindole/Ambiguine Biogenesis Is Mediated by a Cope Rearrangement, C–C Bond-Forming Cascade. J. Am. Chem. Soc. 2015, 137, 15366–15369. DOI: 10.1021/jacs.5b10136 (b) Liu, X.; Hillwig, M. L.; Koharudin, L. M. I.; Gronenborn, A. M. Unified Biogenesis of Ambiguine, Fischerindole, Hapalindole and Welwitindolinone: Identification of a Monogeranylated Indolenine as a Cryptic Common Biosynthetic Intermediate by an Unusual Magnesium-Dependent Aromatic Prenyltransferase. Chem. Commun. 2016, 52, 1737–1740. DOI: 10.1039/C5CC10060G (c). Hillwig, M. L.; Zhu, Q.; Liu, X. Biosynthesis of Ambiguine Indole Alkaloids in Cyanobacterium Fischerella Ambigua. ACS Chem. Biol. 2013, 9, 372–377. DOI: 10.1021/cb400681n
  5. Hu, L.; Rawal, V. H. Total Synthesis of the Chlorinated Pentacyclic Indole Alkaloid (+)-Ambiguine G. J. Am. Chem. Soc. 2021, 143, 10872–10875. DOI: 10.1021/jacs.1c05762

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 企業の組織と各部署の役割
  2. 第20回次世代を担う有機化学シンポジウム
  3. おまえら英語よりもタイピングやろうぜ ~初級編~
  4. ゲノム編集CRISPRに新たな進歩!トランスポゾンを用いた遺伝子…
  5. 第10回次世代を担う有機化学シンポジウムに参加してきました
  6. 近況報告PartIV
  7. 初心者でも簡単!ChatGPTを用いたプログラミング
  8. 化学者のためのエレクトロニクス講座~有機半導体編

注目情報

ピックアップ記事

  1. 積水化学工業、屋外の使用に特化した養生テープ販売 実証実験で耐熱・対候性を訴求
  2. ボロン酸エステルをモノ・ジフルオロメチル基に変える
  3. 【9月開催】第十一回 マツモトファインケミカル技術セミナー   オルガチックスを用いたゾルゲル反応による金属酸化物膜の形成
  4. 「リチウムイオン電池用3D炭素電極の開発」–Caltech・Greer研より
  5. 北大触媒化研、水素製造コスト2―3割安く
  6. NMRの基礎知識【原理編】
  7. 【予告】ケムステ新コンテンツ『CSスポットライトリサーチ』
  8. 博士号とは何だったのか - 早稲田ディプロマミル事件?
  9. とある社長の提言について ~日本合成ゴムとJSR~
  10. ジェフリー·ロング Jeffrey R. Long

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP