[スポンサーリンク]

化学者のつぶやき

はじめから組み込んじゃえ!Ambiguine P の短工程合成!

[スポンサーリンク]

Ambiguine Pの特徴的な6-5-6-7-6多環縮環骨格を、生合成を模倣したカスケード環化反応により一挙に構築することに成功した。この戦略により、市販品からわずか7工程での全合成を達成した。

Ambiguine Pの骨格構築

Ambiguine P (1)は、海洋シアノバクテリアから単離された抗菌活性を示すインドールテルペノイドの一種である (図1A)[1, 2]。本化合物の構造的特徴として、類例のない5環性の多環縮環骨格とそこに含まれるシクロヘプタトリエン(E環)が挙げられる。本化合物の合成においては、高度に縮環した骨格を構築しつつ、酸化度の高い歪んだE環をいかに効率的に構築するかが鍵となる。

1は、2019年にSarpong およびRawalの両研究グループによって全合成が達成されている (図1B)[2,3]。両グループは共通して、インドール部位 (AB環)とテルペン部位 (D環)に相当するフラグメントをC3–C10位間で連結した後、C環およびE環を構築する戦略を採用している。いずれも独自の方法論により効率的な全合成を実現しているが、テルペン部位の構築に多工程を要する点や、炭素のみから成るE環の構築においてヘテロ原子官能基を足がかりとした環化法や当該官能基の除去を含む酸化段階の調整が必要である点など、改良の余地が残されていた。

今回Liらは、CD環部に相当するモノテルペン側鎖とE環にあたる7員環を有するインドール誘導体2を鍵中間体として設定することで、ヘテロ原子官能基に依存しない骨格構築戦略を採用し、市販品から7工程での1の全合成を達成した。具体的には、1の生合成経路の知見を参考に[4]、インドール誘導体2からCope転位、Prins反応、Friedel–Craftsアルキル化を組み合わせたカスケード環化反応を駆使し、6-5-6-7-6縮環構造を有する6を合成した (図1C)。この戦略により、従来法で課題とされていたインドール骨格への逐次的な環構築に起因する工程数の増加を回避し、Ambiguine P (1)の短工程合成を実現した。

図1. (A) Ambiguine Pの構造 (B) 先行研究 (C) 本研究

 

“Concise Total Synthesis of Ambiguine P”
Fei, Y.; Fan, B.; Liu, Z.; Ba, M.; Cui, Z.; Yang, P.; Li, A J. Am. Chem. Soc. 2025, 147, 22, 18391–18396

DOI: 10.1021/jacs.5c00395

論文著者の紹介

研究者:Ang Li (李昂) (研究室HP, ケムステ)
研究者の経歴:
2004 B.Sc. Peking University, China (Prof. Zhen Yang)
2009 Ph. D. The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
2010 Research fellow, Institute of Chemical and Engineering, Singapore (Prof. K. C. Nicolaou)
2010– Professor, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China

研究内容:天然物の全合成研究
研究者:Peng Yang (杨鹏)
研究者の経歴:
2012 B.Sc. Zhengzhou University, China
2017 Ph. D. Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China (Prof. Ang Li)
2017–2020 WuXi AppTec, China
2021– Zhengzhou University, China

研究内容:天然物の全合成研究

論文の概要

1の合成経路を示す(図2A)。著者らはまず、市販のシクロヘプタノンから出発し、ジメチル化とそれに続くFischerインドール合成により7を合成した。次に、7のC3位クロロ化を起点にC10,11位の酸化により8とした後、アルキル化によってC3位にゲラニル基を導入し、2工程収率63%で鍵中間体であるインドール誘導体2を合成した。得られた2に対し、Mg(NTf2)2存在下で加熱すると、Cope転位、Prins反応、Friedel–Craftsアルキル化が連続的に進行し、6-5-6-7-6縮環構造をもつ6が得られた。その後、著者らは骨格酸化段階を調節することで1の全合成を目指した。具体的には、6のC10,11位をDDQを用いて再度酸化して10とした後、DIPEA存在下でtBuOClを作用させ、C3位クロロ化とその脱離により生じた11の異性化により12を得た。最後に、Rawal[5]らの手法に倣ってC15位を立体選択的にヒドロキシル化することで、Ambiguine P (1)の全合成を達成した。

また、2のカスケード環化反応では、目的の6に加え、その立体異性体である6’も副生成物として得られた(図2B)。著者らは、6’の生成機構について、以下のように考察している(図2C)。すなわち、2からCope転位反応により4が生成した後、異性化することで13が生成する。この13が、再度異性化する際にC11位がエピ化した4’となり、6’へと至る経路が提案された。このジアステレオ選択性の制御を目的に、著者らはルイス酸の検討を行った (Table 1)。その結果、Mg(NTf2)2を用いた際に高いジアステレオ選択性で6が得られることを見いだした。

図2. (A) Ambiguine P (1)の全合成 (B) ジアステレオマー6の合成経路 (C) ジアステレオマー6’の合成経路

 

以上のように、本研究では、Ambiguine P (1)の短工程合成が達成された。テルペン部位が「組み込まれた」インドールに着目し、生合成経路を模倣したカスケード環化反応により6-5-6-7-6縮環構造を一挙に構築した点は、極めて巧妙で注目に値する。

参考文献

  1. Walton, K.; Berry, J. Indole Alkaloids of the Stigonematales (Cyanophyta): Chemical Diversity, Biosynthesis and Biological Activity. Mar. Drugs 2016, 14, 73. DOI: 10.3390/md14040073
  2. Xu, J.; Rawal, V. H. Total Synthesis of (−)-Ambiguine P. J. Am. Chem. Soc. 2019, 141, 4820–4823. DOI: 10.1021/jacs.9b01739
  3. Johnson, R. E.; Ree, H.; Hartmann, M.; Lang, L.; Sawano, S.; Sarpong, R. Total Synthesis of Pentacyclic (−)-Ambiguine P Using Sequential Indole Functionalizations. J. Am. Chem. Soc. 2019, 141, 2233–2237. DOI: 10.1021/jacs.8b13388
  4. (a) Li, S.; Lowell, A. N.; Yu, F.; Raveh, A.; Newmister, S. A.; Bair, N.; Schaub, J. M.; Williams, R. M.; Sherman, D. H. Hapalindole/Ambiguine Biogenesis Is Mediated by a Cope Rearrangement, C–C Bond-Forming Cascade. J. Am. Chem. Soc. 2015, 137, 15366–15369. DOI: 10.1021/jacs.5b10136 (b) Liu, X.; Hillwig, M. L.; Koharudin, L. M. I.; Gronenborn, A. M. Unified Biogenesis of Ambiguine, Fischerindole, Hapalindole and Welwitindolinone: Identification of a Monogeranylated Indolenine as a Cryptic Common Biosynthetic Intermediate by an Unusual Magnesium-Dependent Aromatic Prenyltransferase. Chem. Commun. 2016, 52, 1737–1740. DOI: 10.1039/C5CC10060G (c). Hillwig, M. L.; Zhu, Q.; Liu, X. Biosynthesis of Ambiguine Indole Alkaloids in Cyanobacterium Fischerella Ambigua. ACS Chem. Biol. 2013, 9, 372–377. DOI: 10.1021/cb400681n
  5. Hu, L.; Rawal, V. H. Total Synthesis of the Chlorinated Pentacyclic Indole Alkaloid (+)-Ambiguine G. J. Am. Chem. Soc. 2021, 143, 10872–10875. DOI: 10.1021/jacs.1c05762

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 触媒がいざなう加速世界へのバックドア
  2. それは夢から始まったーベンゼンの構造提唱から150年
  3. NMRのプローブと測定(Bruker編)
  4. 【Q&Aシリーズ❷ 技術者・事業担当者向け】 マイクロ…
  5. コロナウイルスCOVID-19による化学研究への影響を最小限にす…
  6. アゾ重合開始剤の特徴と選び方
  7. 【ケムステSlackに訊いて見た④】化学系学生の意外な就職先?
  8. (-)-Cyanthiwigin Fの全合成

注目情報

ピックアップ記事

  1. 学問と創造―ノーベル賞化学者・野依良治博士
  2. SNSコンテスト企画『集まれ、みんなのラボのDIY!』
  3. Reaxys Ph.D Prize2019ファイナリスト発表!
  4. 日本化学会がプロモーションムービーをつくった:ATP交流会で初公開
  5. 第八回 自己集合ペプチドシステム開発 -Shuguang Zhang 教授
  6. 第11回 野依フォーラム若手育成塾
  7. 立体選択的なスピロ環の合成
  8. ホイスラー合金を用いる新規触媒の発見と特性調節
  9. 甲種危険物取扱者・合格体験記~Webmaster編
  10. 世界初 ソフトワーム用自発光液 「ケミホタルペイント」が発売

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP