[スポンサーリンク]

化学者のつぶやき

はじめから組み込んじゃえ!Ambiguine P の短工程合成!

[スポンサーリンク]

Ambiguine Pの特徴的な6-5-6-7-6多環縮環骨格を、生合成を模倣したカスケード環化反応により一挙に構築することに成功した。この戦略により、市販品からわずか7工程での全合成を達成した。

Ambiguine Pの骨格構築

Ambiguine P (1)は、海洋シアノバクテリアから単離された抗菌活性を示すインドールテルペノイドの一種である (図1A)[1, 2]。本化合物の構造的特徴として、類例のない5環性の多環縮環骨格とそこに含まれるシクロヘプタトリエン(E環)が挙げられる。本化合物の合成においては、高度に縮環した骨格を構築しつつ、酸化度の高い歪んだE環をいかに効率的に構築するかが鍵となる。

1は、2019年にSarpong およびRawalの両研究グループによって全合成が達成されている (図1B)[2,3]。両グループは共通して、インドール部位 (AB環)とテルペン部位 (D環)に相当するフラグメントをC3–C10位間で連結した後、C環およびE環を構築する戦略を採用している。いずれも独自の方法論により効率的な全合成を実現しているが、テルペン部位の構築に多工程を要する点や、炭素のみから成るE環の構築においてヘテロ原子官能基を足がかりとした環化法や当該官能基の除去を含む酸化段階の調整が必要である点など、改良の余地が残されていた。

今回Liらは、CD環部に相当するモノテルペン側鎖とE環にあたる7員環を有するインドール誘導体2を鍵中間体として設定することで、ヘテロ原子官能基に依存しない骨格構築戦略を採用し、市販品から7工程での1の全合成を達成した。具体的には、1の生合成経路の知見を参考に[4]、インドール誘導体2からCope転位、Prins反応、Friedel–Craftsアルキル化を組み合わせたカスケード環化反応を駆使し、6-5-6-7-6縮環構造を有する6を合成した (図1C)。この戦略により、従来法で課題とされていたインドール骨格への逐次的な環構築に起因する工程数の増加を回避し、Ambiguine P (1)の短工程合成を実現した。

図1. (A) Ambiguine Pの構造 (B) 先行研究 (C) 本研究

 

“Concise Total Synthesis of Ambiguine P”
Fei, Y.; Fan, B.; Liu, Z.; Ba, M.; Cui, Z.; Yang, P.; Li, A J. Am. Chem. Soc. 2025, 147, 22, 18391–18396

DOI: 10.1021/jacs.5c00395

論文著者の紹介

研究者:Ang Li (李昂) (研究室HP, ケムステ)
研究者の経歴:
2004 B.Sc. Peking University, China (Prof. Zhen Yang)
2009 Ph. D. The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
2010 Research fellow, Institute of Chemical and Engineering, Singapore (Prof. K. C. Nicolaou)
2010– Professor, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China

研究内容:天然物の全合成研究
研究者:Peng Yang (杨鹏)
研究者の経歴:
2012 B.Sc. Zhengzhou University, China
2017 Ph. D. Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China (Prof. Ang Li)
2017–2020 WuXi AppTec, China
2021– Zhengzhou University, China

研究内容:天然物の全合成研究

論文の概要

1の合成経路を示す(図2A)。著者らはまず、市販のシクロヘプタノンから出発し、ジメチル化とそれに続くFischerインドール合成により7を合成した。次に、7のC3位クロロ化を起点にC10,11位の酸化により8とした後、アルキル化によってC3位にゲラニル基を導入し、2工程収率63%で鍵中間体であるインドール誘導体2を合成した。得られた2に対し、Mg(NTf2)2存在下で加熱すると、Cope転位、Prins反応、Friedel–Craftsアルキル化が連続的に進行し、6-5-6-7-6縮環構造をもつ6が得られた。その後、著者らは骨格酸化段階を調節することで1の全合成を目指した。具体的には、6のC10,11位をDDQを用いて再度酸化して10とした後、DIPEA存在下でtBuOClを作用させ、C3位クロロ化とその脱離により生じた11の異性化により12を得た。最後に、Rawal[5]らの手法に倣ってC15位を立体選択的にヒドロキシル化することで、Ambiguine P (1)の全合成を達成した。

また、2のカスケード環化反応では、目的の6に加え、その立体異性体である6’も副生成物として得られた(図2B)。著者らは、6’の生成機構について、以下のように考察している(図2C)。すなわち、2からCope転位反応により4が生成した後、異性化することで13が生成する。この13が、再度異性化する際にC11位がエピ化した4’となり、6’へと至る経路が提案された。このジアステレオ選択性の制御を目的に、著者らはルイス酸の検討を行った (Table 1)。その結果、Mg(NTf2)2を用いた際に高いジアステレオ選択性で6が得られることを見いだした。

図2. (A) Ambiguine P (1)の全合成 (B) ジアステレオマー6の合成経路 (C) ジアステレオマー6’の合成経路

 

以上のように、本研究では、Ambiguine P (1)の短工程合成が達成された。テルペン部位が「組み込まれた」インドールに着目し、生合成経路を模倣したカスケード環化反応により6-5-6-7-6縮環構造を一挙に構築した点は、極めて巧妙で注目に値する。

参考文献

  1. Walton, K.; Berry, J. Indole Alkaloids of the Stigonematales (Cyanophyta): Chemical Diversity, Biosynthesis and Biological Activity. Mar. Drugs 2016, 14, 73. DOI: 10.3390/md14040073
  2. Xu, J.; Rawal, V. H. Total Synthesis of (−)-Ambiguine P. J. Am. Chem. Soc. 2019, 141, 4820–4823. DOI: 10.1021/jacs.9b01739
  3. Johnson, R. E.; Ree, H.; Hartmann, M.; Lang, L.; Sawano, S.; Sarpong, R. Total Synthesis of Pentacyclic (−)-Ambiguine P Using Sequential Indole Functionalizations. J. Am. Chem. Soc. 2019, 141, 2233–2237. DOI: 10.1021/jacs.8b13388
  4. (a) Li, S.; Lowell, A. N.; Yu, F.; Raveh, A.; Newmister, S. A.; Bair, N.; Schaub, J. M.; Williams, R. M.; Sherman, D. H. Hapalindole/Ambiguine Biogenesis Is Mediated by a Cope Rearrangement, C–C Bond-Forming Cascade. J. Am. Chem. Soc. 2015, 137, 15366–15369. DOI: 10.1021/jacs.5b10136 (b) Liu, X.; Hillwig, M. L.; Koharudin, L. M. I.; Gronenborn, A. M. Unified Biogenesis of Ambiguine, Fischerindole, Hapalindole and Welwitindolinone: Identification of a Monogeranylated Indolenine as a Cryptic Common Biosynthetic Intermediate by an Unusual Magnesium-Dependent Aromatic Prenyltransferase. Chem. Commun. 2016, 52, 1737–1740. DOI: 10.1039/C5CC10060G (c). Hillwig, M. L.; Zhu, Q.; Liu, X. Biosynthesis of Ambiguine Indole Alkaloids in Cyanobacterium Fischerella Ambigua. ACS Chem. Biol. 2013, 9, 372–377. DOI: 10.1021/cb400681n
  5. Hu, L.; Rawal, V. H. Total Synthesis of the Chlorinated Pentacyclic Indole Alkaloid (+)-Ambiguine G. J. Am. Chem. Soc. 2021, 143, 10872–10875. DOI: 10.1021/jacs.1c05762

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機合成化学協会誌3月号:鉄-インジウム錯体・酸化的ハロゲン化反…
  2. 2020年の人気記事執筆者からのコメント全文を紹介
  3. それは夢から始まったーベンゼンの構造提唱から150年
  4. 全フッ素置換シクロプロピル化試薬の開発
  5. ダウとデュポンの統合に関する小話
  6. ノーベル化学賞は化学者の手に
  7. 科学を理解しようとしない人に科学を語ることに意味はあるのか?
  8. 酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

注目情報

ピックアップ記事

  1. 「化学研究ライフハック」シリーズ 2017版まとめ
  2. モウンジ・バウェンディ Moungi G Bawendi
  3. コロナウイルスが免疫システムから逃れる方法(2)
  4. ウィリアム・モーナー William E. Moerner
  5. 三共、第一製薬が統合へ 売上高9000億円規模
  6. エノラートの酸化的カップリング Oxidative Coupling of Enolate
  7. 椎名マクロラクトン化 Shiina Macrolactonization
  8. 縮合剤 Condensation Reagent
  9. パーキン反応 Perkin Reaction
  10. 水から電子を取り出す実力派触媒の登場!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

ルイス酸性を持つアニオン!?遷移金属触媒の新たなカウンターアニオン”BBcat”

第667回のスポットライトリサーチは、東京大学大学院工学系研究科 野崎研究室 の萬代遼さんにお願いし…

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

もう一歩先へ進みたい人の化学でつかえる線形代数

概要化学分野の諸問題に潜む線形代数の要素を,化学専攻の目線から解体・解説する。(引用:コロナ…

ノーベル賞受賞者と語り合う5日間!「第17回HOPEミーティング」参加者募集!

今年もHOPEミーティングの参加者募集の時期がやって来ました。HOPEミーティングは、博士課…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP