[スポンサーリンク]

化学者のつぶやき

ボロン酸エステルをモノ・ジフルオロメチル基に変える

[スポンサーリンク]

ボロン酸エステルを原料としたモノ、ジフルオロメチル化反応が開発された。立体特異的に進行する本反応では、キラルなボロン酸エステルを用いることでキラルなフルオロメチル化合物が得られる。

直接的モノ、ジフルオロメチル化反応

フルオロメチル基(CFx基)は代謝安定性、結合親和性などに優れており、農薬や医薬品に多く組み込まれている[1]。その中でも最も人気が高いものはトリフルオロメチル基(CF3基)である。CF3基の直接導入法は多岐に渡り、信頼性の高い反応化剤が開発・市販化されている(図1A)[2]。一方でCF3基に比べ、モノフルオロメチル基(CH2F基)およびジフルオロメチル基(CF2H基)の直接導入法の開発は発展途上であり、効果的な反応剤も少ない[3]。sp2炭素への同官能基の導入はクロスカップリング反応が主である。
例えば、HartwigらはTMSジフルオロメタンをCF2H化剤としたヨウ化銅による、芳香族ヨウ化物のジフルオロメチル化反応を報告している(図1B)[4]。sp3炭素に対しては、アルケンに対するラジカル反応がほとんどであり、不斉反応への展開は困難である。数少ない不斉反応の例の1つとして、2017年、Liuらはアルケンの不斉ラジカルアミノジフルオロメチル化反応を報告した(図1C)[5]。ジフルオロメチルスルホニルクロリドをCF2H化剤とし、Cu触媒存在下キラルリン酸L1を添加することでエナンチオ選択的にジフルオロメチル化体が得られる。
今回ブリストル大学のAggarwal教授らはボロン酸エステルを出発物質とした、新たなCH2F基およびCF2H基の導入法を開発した(図1D)。すなわち、ボロン酸エステルに対して、安価に購入可能なフルオロヨードメタンより調製したフルオロカルベノイドを作用させ、フルオロボロン酸エステルを合成する(マッテソン型増炭反応)。続いてボロン酸エステル部位をプロトン化/フッ素化することでモノおよびジフルオロメチル化された化合物が得られる(図1D)。反応は立体特異的に進行するため、キラルボロン酸エステルを用いることで、キラルフルオロメチル化合物が得られる。

図1 (A)CF3化剤 (B) カップリングによるジフルオロメチル化 (C) エナンチオ選択的アミノジフルオロメチル化 (D) 今回の反応

 

“Divergent, Stereospecific Mono- and Difluoromethylation of Boronic Esters”

Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 8502-8506.

DOI: 10.1002/anie.202002246

論文著者の紹介

研究者:Varinder K. Aggarwal

研究者の経歴:

1980-1983 BSc, University of Cambridge, UK
1983-1986 Ph.D, University of Cambridge, UK (Prof. Stuart Warren)
1986-1988 Postdoc, Columbia University, USA (Prof. Gilbert Stork)
1988-1991 Lecturer in Chemistry, University of Bath, UK
1991-1995 Lecturer in Chemistry, University of Sheffield, UK
1995-1997 Reader in Chemistry, University of Sheffield, UK
1997-2000 Professor in Chemistry, University of Sheffield, UK
2000- Professor in Synthetic Chemistry, University of Bristol, UK
2019- Alfred Capper Pass Professor of Chemistry, University of Bristol, UK

研究内容:リチオ化に続くホウ素化、遷移金属クロスカップリング反応、ボロネートを求核剤とした反応の開発、Prostanoidsの全合成

論文の概要

具体的には、種々のボロン酸エステルと、フルオロヨードメタンとLDAによって調製したフルオロカルベノイドを反応させ一炭素増炭した中間体3とする。その後、触媒量のTFA存在下4-t-Buカテコールによる3のプロト脱ホウ素化が進行し、モノフルオロメチル化体4を与える(図2A)。また3は、TFA存在下、硝酸銀、セレクトフルオロを用いたフルオロ脱ホウ素化によりジフルオロメチル化体5を与える。本手法の鍵は遷移状態2における脱離基の選択である。この脱離基には1)2から3への1.2-転移を促進する、2)フルオロカルベノイドを安定化させない、3)フルオロカルベノイドからLiFの脱離によって生じるカルベンを安定化させないなどの条件を満たしている必要がある。
そこでAggarwal教授らはモデル基質として、フッ素の置換数を変えたブロモメタンカルボアニオンとMeBpinを用いたDFT計算を行った(図2B)。その結果、フッ素が1置換若しくは置換していないものではボロネートIが生成した後、ボロネートIの解離によるカルボアニオンIIIの生成よりエネルギーの小さいメチル基の1,2-転移が進行することがわかった。また、カルベン生成に対する各脱離基のDFT計算の結果、ヨウ素を脱離基として用いた際、最もカルベン生成のギブズエネルギーが高かったことから、著者らはヨウ素が最も適した脱離基であると結論づけた(詳細は論文Scheme 2C参照)。
本手法は種々の置換基をもつ芳香族化合物(4a–4c, 5a–5c)に加え、環状アミン(4d and 5d)や2級ボロン酸(4e and 5e)で適用でき、対応するモノおよびジフルオロメチル化体を与えた(図2C)。さらに反応は立体特異的に進行するため、キラルな2級ボロン酸エステルからは、高い鏡像体比を保持した4e5eを与えた。

図2 (A) 今回の反応 (B) DFT計算(一部論文より引用) (C) 基質適用範囲

以上、ボロン酸エステルのモノフルオロメチルおよびジフルオロメチル化反応が開発された。これらのフルオロメチル化反応が今後の創薬化学の発展につながることが期待される。

参考文献

  1. (a) Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition, Science 2007, 317, 1881–1886. DOI: 1126/science.1131943. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. DOI: 10.1039/B610213C
  2. Ma, J. -A.; Cahard, D. Strategies for Nucleophilic, Electrophilic, and Radical Trifluoromethylations. J. Fluorine Chem. 2007, 128, 975–996. DOI: 10.1016/j.jfluchem.2007.04.026
  3. (a) Rong, J.;Ni, C.; Hu, J. Metal-Catalyzed Direct Difluoromethylation Reactions. Asian J. Org. Chem. 2017, 6, 139–152. DOI: 1002/ajoc.201600509. (b) Hu, J.; Zhang, W.; Wang, F. Selective Difluoromethylation and Monofluoromethylation Reactions. Chem. Commun. 2009, 7465–7478. DOI: 10.1039/B916463D
  4. Fier, P. S.; Hartwig, J. F. Copper-Mediated Difluoromethylation of Aryl and Vinyl Iodides. J. Am. Chem. Soc. 2012, 12, 5524–5527. DOI: 10.1021/ja301013h
  5. Lin, J. -S.; Wang, F. -L.; Dong, X. -Y.; He, W. -W.; Yuan, Y.; Chen, S.; Liu, X. -Y. Catalytic Asymmetric Radical Aminoperfluoroalkylation and Aminodifluoromethylation of Alkenes to Versatile Enantioenriched-Fluoroalkyl Amines. Nat. Commun. 2017, 8, 14841–14851. DOI: 10.1038/ncomms14841

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 「赤チン」~ある水銀化合物の歴史~
  2. 色の変わる分子〜クロミック分子〜
  3. 【書籍】機器分析ハンドブック2 高分子・分離分析編
  4. 官能基選択的な 5 員環ブロック連結反応を利用したステモアミド系…
  5. 生体深部イメージングに有効な近赤外発光分子の開発
  6. 元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」
  7. メカノケミストリーを用いた固体クロスカップリング反応
  8. タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Retraction watch リトラクション・ウオッチ
  2. チャイタン・コシュラ Chaitan Khosla
  3. 学振申請書を磨き上げる11のポイント [文章編・後編]
  4. 育て!燃料電池を担う子供たち
  5. 安全なジアゾメタン原料
  6. 奇妙奇天烈!植物共生菌から「8の字」型の環を持つ謎の糖が発見
  7. カンプス キノリン合成 Camps Quinoline Synthesis
  8. つり革に つかまりアセる ワキ汗の夏
  9. 「脱芳香族的二重官能基修飾化反応の研究」ーイリノイ大学David Sarlah研より
  10. ホウ素でがんをやっつける!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

E.・ピーター・グリーンバーグ E. Peter Greenberg

E・ピーター・グリーンバーグ(Everett Peter Greenberg, 1948年11月7日…

「フント則を破る」励起一重項と三重項のエネルギーが逆転した発光材料

第421回のスポットライトリサーチは、大阪大学大学院工学研究科応用化学専攻 中山研究室の相澤 直矢(…

研究のプロフェッショナルに囲まれて仕事をしたい 大学助教の願いを実現した「ビジョンマッチング」

「アカデミアから民間への移籍は難しい」「民間企業にアカデミアの研究者はな…

SNS予想で盛り上がれ!2022年ノーベル化学賞は誰の手に?

さてことしも9月半ば、ノーベル賞シーズンが到来します!化学賞は日本時間 10月5日(水) 18時45…

マテリアルズ・インフォマティクスにおける予測モデルの解釈性を上げるには?

開催日:2022/09/28 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

クラリベイト・アナリティクスが「引用栄誉賞2022」を発表!

ノーベル賞発表時期が近づき、例年同様、クラリベイト・アナリティクス社から2022年の引用栄誉賞が発表…

「つける」と「はがす」の新技術|分子接合と表面制御 R4

開講期間令和4(2022)年  9月28日(水)、29日(木)(計2日間)募集人員15名…

ケムステ版・ノーベル化学賞候補者リスト【2022年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

第31回Vシンポ「精密有機構造解析」を開催します!

こんにちは、今回第31回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

理化学機器のリユースマーケット「ZAI」

不要になった理化学機器どうしていますか?大学だと資産や予算上の関係でなかなか処分に困るところ…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP