[スポンサーリンク]

化学者のつぶやき

ボロン酸エステルをモノ・ジフルオロメチル基に変える

[スポンサーリンク]

ボロン酸エステルを原料としたモノ、ジフルオロメチル化反応が開発された。立体特異的に進行する本反応では、キラルなボロン酸エステルを用いることでキラルなフルオロメチル化合物が得られる。

直接的モノ、ジフルオロメチル化反応

フルオロメチル基(CFx基)は代謝安定性、結合親和性などに優れており、農薬や医薬品に多く組み込まれている[1]。その中でも最も人気が高いものはトリフルオロメチル基(CF3基)である。CF3基の直接導入法は多岐に渡り、信頼性の高い反応化剤が開発・市販化されている(図1A)[2]。一方でCF3基に比べ、モノフルオロメチル基(CH2F基)およびジフルオロメチル基(CF2H基)の直接導入法の開発は発展途上であり、効果的な反応剤も少ない[3]。sp2炭素への同官能基の導入はクロスカップリング反応が主である。
例えば、HartwigらはTMSジフルオロメタンをCF2H化剤としたヨウ化銅による、芳香族ヨウ化物のジフルオロメチル化反応を報告している(図1B)[4]。sp3炭素に対しては、アルケンに対するラジカル反応がほとんどであり、不斉反応への展開は困難である。数少ない不斉反応の例の1つとして、2017年、Liuらはアルケンの不斉ラジカルアミノジフルオロメチル化反応を報告した(図1C)[5]。ジフルオロメチルスルホニルクロリドをCF2H化剤とし、Cu触媒存在下キラルリン酸L1を添加することでエナンチオ選択的にジフルオロメチル化体が得られる。
今回ブリストル大学のAggarwal教授らはボロン酸エステルを出発物質とした、新たなCH2F基およびCF2H基の導入法を開発した(図1D)。すなわち、ボロン酸エステルに対して、安価に購入可能なフルオロヨードメタンより調製したフルオロカルベノイドを作用させ、フルオロボロン酸エステルを合成する(マッテソン型増炭反応)。続いてボロン酸エステル部位をプロトン化/フッ素化することでモノおよびジフルオロメチル化された化合物が得られる(図1D)。反応は立体特異的に進行するため、キラルボロン酸エステルを用いることで、キラルフルオロメチル化合物が得られる。

図1 (A)CF3化剤 (B) カップリングによるジフルオロメチル化 (C) エナンチオ選択的アミノジフルオロメチル化 (D) 今回の反応

 

“Divergent, Stereospecific Mono- and Difluoromethylation of Boronic Esters”

Fasano, V.; Winter, N.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2020, 59, 8502-8506.

DOI: 10.1002/anie.202002246

論文著者の紹介

研究者:Varinder K. Aggarwal

研究者の経歴:

1980-1983 BSc, University of Cambridge, UK
1983-1986 Ph.D, University of Cambridge, UK (Prof. Stuart Warren)
1986-1988 Postdoc, Columbia University, USA (Prof. Gilbert Stork)
1988-1991 Lecturer in Chemistry, University of Bath, UK
1991-1995 Lecturer in Chemistry, University of Sheffield, UK
1995-1997 Reader in Chemistry, University of Sheffield, UK
1997-2000 Professor in Chemistry, University of Sheffield, UK
2000- Professor in Synthetic Chemistry, University of Bristol, UK
2019- Alfred Capper Pass Professor of Chemistry, University of Bristol, UK

研究内容:リチオ化に続くホウ素化、遷移金属クロスカップリング反応、ボロネートを求核剤とした反応の開発、Prostanoidsの全合成

論文の概要

具体的には、種々のボロン酸エステルと、フルオロヨードメタンとLDAによって調製したフルオロカルベノイドを反応させ一炭素増炭した中間体3とする。その後、触媒量のTFA存在下4-t-Buカテコールによる3のプロト脱ホウ素化が進行し、モノフルオロメチル化体4を与える(図2A)。また3は、TFA存在下、硝酸銀、セレクトフルオロを用いたフルオロ脱ホウ素化によりジフルオロメチル化体5を与える。本手法の鍵は遷移状態2における脱離基の選択である。この脱離基には1)2から3への1.2-転移を促進する、2)フルオロカルベノイドを安定化させない、3)フルオロカルベノイドからLiFの脱離によって生じるカルベンを安定化させないなどの条件を満たしている必要がある。
そこでAggarwal教授らはモデル基質として、フッ素の置換数を変えたブロモメタンカルボアニオンとMeBpinを用いたDFT計算を行った(図2B)。その結果、フッ素が1置換若しくは置換していないものではボロネートIが生成した後、ボロネートIの解離によるカルボアニオンIIIの生成よりエネルギーの小さいメチル基の1,2-転移が進行することがわかった。また、カルベン生成に対する各脱離基のDFT計算の結果、ヨウ素を脱離基として用いた際、最もカルベン生成のギブズエネルギーが高かったことから、著者らはヨウ素が最も適した脱離基であると結論づけた(詳細は論文Scheme 2C参照)。
本手法は種々の置換基をもつ芳香族化合物(4a–4c, 5a–5c)に加え、環状アミン(4d and 5d)や2級ボロン酸(4e and 5e)で適用でき、対応するモノおよびジフルオロメチル化体を与えた(図2C)。さらに反応は立体特異的に進行するため、キラルな2級ボロン酸エステルからは、高い鏡像体比を保持した4e5eを与えた。

図2 (A) 今回の反応 (B) DFT計算(一部論文より引用) (C) 基質適用範囲

以上、ボロン酸エステルのモノフルオロメチルおよびジフルオロメチル化反応が開発された。これらのフルオロメチル化反応が今後の創薬化学の発展につながることが期待される。

参考文献

  1. (a) Müller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition, Science 2007, 317, 1881–1886. DOI: 1126/science.1131943. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. DOI: 10.1039/B610213C
  2. Ma, J. -A.; Cahard, D. Strategies for Nucleophilic, Electrophilic, and Radical Trifluoromethylations. J. Fluorine Chem. 2007, 128, 975–996. DOI: 10.1016/j.jfluchem.2007.04.026
  3. (a) Rong, J.;Ni, C.; Hu, J. Metal-Catalyzed Direct Difluoromethylation Reactions. Asian J. Org. Chem. 2017, 6, 139–152. DOI: 1002/ajoc.201600509. (b) Hu, J.; Zhang, W.; Wang, F. Selective Difluoromethylation and Monofluoromethylation Reactions. Chem. Commun. 2009, 7465–7478. DOI: 10.1039/B916463D
  4. Fier, P. S.; Hartwig, J. F. Copper-Mediated Difluoromethylation of Aryl and Vinyl Iodides. J. Am. Chem. Soc. 2012, 12, 5524–5527. DOI: 10.1021/ja301013h
  5. Lin, J. -S.; Wang, F. -L.; Dong, X. -Y.; He, W. -W.; Yuan, Y.; Chen, S.; Liu, X. -Y. Catalytic Asymmetric Radical Aminoperfluoroalkylation and Aminodifluoromethylation of Alkenes to Versatile Enantioenriched-Fluoroalkyl Amines. Nat. Commun. 2017, 8, 14841–14851. DOI: 10.1038/ncomms14841
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 実験の再現性でお困りではありませんか?
  2. (–)-Batrachotoxinin Aの短工程全合成
  3. マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ…
  4. 関東化学2019年採用情報
  5. 不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応
  6. 分子間相互作用によりお椀反転の遷移状態を安定化する
  7. Nature Reviews Chemistry創刊!
  8. スルホニルアミノ酸を含むペプチドフォルダマーの創製

注目情報

ピックアップ記事

  1. 大塚製薬4200億円で米バイオベンチャーを買収
  2. スタンリー・ウィッティンガム M. S. Whittingham
  3. トリフェニル-2,6-キシリルビスムトニウムテトラフルオロボラート:Triphenyl-2,6-xylylbismuthonium Tetrafluoroborate
  4. 第130回―「無機薄膜成長法を指向した有機金属化学」Lisa McElwee-White教授
  5. 薄くて巻ける有機ELディスプレー・京大など開発
  6. ゲヴァルト チオフェン合成 Gewald Thiophene Synthesis
  7. 武田薬、糖尿病治療剤「アクトス」の効能を追加申請
  8. 春季ACSMeetingに行ってきました
  9. 画期的な糖尿病治療剤を開発
  10. カルボン酸、窒素をトスしてアミノ酸へ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP