[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~有機半導体編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は、将来シリコンや化合物半導体などの無機材料を置き換えると目される有機半導体についてご紹介します。

OLED照明(画像:Wikipedia

特長

有機半導体とは、その名の通り半導体として振る舞う有機物全般を指し、昨今数多くの研究成果が発表されている非常にホットな領域でもあります。

有機半導体の利点は数多くありますが、その最たるものはウエハから微細加工を進めて素子を形成するようなトップダウン型のリソグラフィー技術を原理的には用いずに済む点です。分子そのものが優れた電子物性を有する有機半導体をボトムアップ式に集積することで、極めて微細な回路を形成できると期待されます(より踏み込んで、単分子からなる素子を動作させる試みが分子エレクトロニクスです)。

さらに、安価、軽量であるほか、製造に伴う環境負荷の低減や、機械的な折り曲げなども可能であり、塗布プロセスによる作製と大面積化が容易という利点もあります。

 

歴史

そのような有機半導体ですが、その研究が始まったのはわずか半世紀あまり前のことです。かつては、全ての有機化合物は絶縁体であり、半導体としての挙動を示すことはないと信奉されていました。この固定観念を覆したのは日本の有機化学者である赤松秀雄先生と、その門下生でもある井口洋夫先生、松永義夫先生です。

三氏は1954年にペリレン・臭素錯体が異常に高い常磁性と電気伝導度を示すことを見出し、それが電荷移動錯体の形成に起因することを突き止めました。これにより、有機化合物であってもπ共役系を有する構造であれば本質的に伝導体となり得ることが示されました。

ペリレンと蛍光(画像:Wikipedia

さらに、1977年には白川英樹先生により、ハロゲンをドープしたポリアセチレン薄膜が高い電気伝導度を示すことを明らかにしました。白川先生はこの業績をたたえられてノーベル賞を授与されています。

なお、この発見に際して、重合触媒の濃度を誤って1000倍高くしてしまったところ従来は得られなかったポリアセチレン薄膜が生成したほか、想定を超える電気伝導度だったために高価な電流計が過負荷で壊れてしまったという逸話もあり、ブレークスルーの芽を決して見逃さない白川先生の鋭い観察眼が窺えます。

分類

さて、有機半導体はその分子サイズによって、低分子系と高分子系に大別されます。

低分子系は再結晶や昇華による精製が容易で高品質な結晶を得やすい一方、均質な薄膜調製の困難さ、薄膜での耐熱性の低さなどの課題もあります。

対する高分子系は均一な薄膜調製が容易で耐熱性にも優れる半面、結晶性の低さ、分子量制御や触媒除去の難しさといった欠点もあります。2020年現在では総じて低分子系有機半導体の方が、単位電界あたりのキャリアの速度を示すキャリア移動度などの物性に優れています。一般に、キャリア移動度が高いほど想定される用途も広がります(詳細は後述)。

また、無機系材料の半導体において不純物のドーピング(イオン注入)によるn型/p型の作り分けがなされるのと対照的に、有機半導体では分子のHOMO/LUMOのエネルギー準位と電極材料の仕事関数によって物性が規定されるのも特徴です。有機半導体は一般的にp型特性を示すものがn型に比して圧倒的に多く知られていましたが、分子設計とデバイス構造次第で、用いるキャリアを選択することも不可能ではありません。

さらに、有機電界効果型トランジスタ(OFET)において、ゲート電圧とドレイン電圧の調整によって、両方のキャリアが流れるambipolar型トランジスタとなりうることから、ドーピングを施していない有機半導体は真性半導体としての挙動を示しうることが示されています。この性質を応用した発光素子への応用研究も盛んです。

化合物

p型半導体材料(正孔輸送材料)は多数知られていますが、なかでもルブレンは非常に高いキャリア移動度(50 cm2/V s)を示します。また、キャリア移動度では劣りますがペンタセンも古くから研究がなされており、蒸着や塗布による薄膜形成プロセスも開発されています。また、銅フタロシアニン(CuPc)オリゴチオフェンなども物性が詳しく調べられているほか、高分子材料ではポリチオフェンなども有望視されています。

上からルブレン、ペンタセン

一方、n型半導体ではフラーレン誘導体や含フッ素化合物が主に研究されていますが、ペリレンカルボン酸ジイミドなども特殊な骨格を含まない材料として異彩を放っています。

ペリレンカルボン酸ジイミド

応用

キャリア移動度は有機半導体の性能指標としてよく用いられ、数値が高いほど高度な用途への利用が期待できます。各用途との対応は概ね以下の通りです。

0.1~1 cm2/V s : E-inkやディスプレイ、電子ペーパー

1~10 cm2/V s : 電子タグやICカード

>100 cm2/V s : CPU等の論理演算

現在研究されている主な用途としては、無機半導体における電界効果型トランジスタ(FET)を有機半導体で構築した有機電界効果型トランジスタ(OFET)や、発光ダイオード(LED)に対応した有機EL(OLED)、太陽電池に対する有機太陽電池(OSC)などが挙げられます。このうちOLEDはスマートフォンのディスプレイなどに広く実用化されています。一つ一つご紹介するには紙面が足りませんので、いずれ独立記事を執筆できればと思います。

有機半導体の強みはボトムアップ型の微細加工を可能にする点にありますが、その真価を発揮できる領域(論理演算デバイス)への応用にはキャリア移動度の向上と微細加工技術の発展が不可欠です。しばらくはこれらの分野を無機半導体が席巻する時代が続くと思われますが、将来が楽しみですね。

関連サイト

関連書籍

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 13族元素含有ベンゼンの合成と性質の解明
  2. 2007年度ノーベル化学賞を予想!(1)
  3. 光触媒反応用途の青色LED光源を比較してみた【2020/8/11…
  4. Wolfram|Alphaでお手軽物性チェック!「Reagent…
  5. 「サイエンスアワードエレクトロケミストリー賞」が気になったので調…
  6. ケムステVシンポまとめ
  7. タンパク質立体構造をPDBjViewerで表示しよう
  8. 春季ACSMeetingに行ってきました

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 原子一個の電気陰性度を測った! ―化学結合の本質に迫る―
  2. ダウとデュポンの統合に関する小話
  3. 電気化学的HFIPエーテル形成を経る脱水素クロスカップリング反応
  4. ポール・ウェンダー Paul A. Wender
  5. 有機合成化学協会誌10月号:不飽和脂肪酸代謝産物・フタロシアニン・トリアジン・アルカロイド・有機結晶
  6. ブラシノステロイド (brassinosteroid)
  7. クリス・クミンス Christopher C. Cummins
  8. C70の中に水分子を閉じ込める
  9. 最新有機合成法: 設計と戦略
  10. バイエルワークショップ Bayer Synthetic Organic Chemistry Workshop 2018

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

三井化学岩国大竹工場の設備が未来技術遺産に登録

三井化学はこのほど、岩国大竹工場(山口県和木町)にあるポリエチレン製造装置が、国立科学博物館により、…

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を…

gem-ジフルオロアルケンの新奇合成法

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ…

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-

「ケミカルマテリアルJapan2020-ONLINEー(主催:株式会社化学工業日報社)」は、未来に向…

Chem-Station Twitter

PAGE TOP