[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~有機半導体編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。

今回は、将来シリコンや化合物半導体などの無機材料を置き換えると目される有機半導体についてご紹介します。

OLED照明(画像:Wikipedia

特長

有機半導体とは、その名の通り半導体として振る舞う有機物全般を指し、昨今数多くの研究成果が発表されている非常にホットな領域でもあります。

有機半導体の利点は数多くありますが、その最たるものはウエハから微細加工を進めて素子を形成するようなトップダウン型のリソグラフィー技術を原理的には用いずに済む点です。分子そのものが優れた電子物性を有する有機半導体をボトムアップ式に集積することで、極めて微細な回路を形成できると期待されます(より踏み込んで、単分子からなる素子を動作させる試みが分子エレクトロニクスです)。

さらに、安価、軽量であるほか、製造に伴う環境負荷の低減や、機械的な折り曲げなども可能であり、塗布プロセスによる作製と大面積化が容易という利点もあります。

 

歴史

そのような有機半導体ですが、その研究が始まったのはわずか半世紀あまり前のことです。かつては、全ての有機化合物は絶縁体であり、半導体としての挙動を示すことはないと信奉されていました。この固定観念を覆したのは日本の有機化学者である赤松秀雄先生と、その門下生でもある井口洋夫先生、松永義夫先生です。

三氏は1954年にペリレン・臭素錯体が異常に高い常磁性と電気伝導度を示すことを見出し、それが電荷移動錯体の形成に起因することを突き止めました。これにより、有機化合物であってもπ共役系を有する構造であれば本質的に伝導体となり得ることが示されました。

ペリレンと蛍光(画像:Wikipedia

さらに、1977年には白川英樹先生により、ハロゲンをドープしたポリアセチレン薄膜が高い電気伝導度を示すことを明らかにしました。白川先生はこの業績をたたえられてノーベル賞を授与されています。

なお、この発見に際して、重合触媒の濃度を誤って1000倍高くしてしまったところ従来は得られなかったポリアセチレン薄膜が生成したほか、想定を超える電気伝導度だったために高価な電流計が過負荷で壊れてしまったという逸話もあり、ブレークスルーの芽を決して見逃さない白川先生の鋭い観察眼が窺えます。

分類

さて、有機半導体はその分子サイズによって、低分子系と高分子系に大別されます。

低分子系は再結晶や昇華による精製が容易で高品質な結晶を得やすい一方、均質な薄膜調製の困難さ、薄膜での耐熱性の低さなどの課題もあります。

対する高分子系は均一な薄膜調製が容易で耐熱性にも優れる半面、結晶性の低さ、分子量制御や触媒除去の難しさといった欠点もあります。2020年現在では総じて低分子系有機半導体の方が、単位電界あたりのキャリアの速度を示すキャリア移動度などの物性に優れています。一般に、キャリア移動度が高いほど想定される用途も広がります(詳細は後述)。

また、無機系材料の半導体において不純物のドーピング(イオン注入)によるn型/p型の作り分けがなされるのと対照的に、有機半導体では分子のHOMO/LUMOのエネルギー準位と電極材料の仕事関数によって物性が規定されるのも特徴です。有機半導体は一般的にp型特性を示すものがn型に比して圧倒的に多く知られていましたが、分子設計とデバイス構造次第で、用いるキャリアを選択することも不可能ではありません。

さらに、有機電界効果型トランジスタ(OFET)において、ゲート電圧とドレイン電圧の調整によって、両方のキャリアが流れるambipolar型トランジスタとなりうることから、ドーピングを施していない有機半導体は真性半導体としての挙動を示しうることが示されています。この性質を応用した発光素子への応用研究も盛んです。

化合物

p型半導体材料(正孔輸送材料)は多数知られていますが、なかでもルブレンは非常に高いキャリア移動度(50 cm2/V s)を示します。また、キャリア移動度では劣りますがペンタセンも古くから研究がなされており、蒸着や塗布による薄膜形成プロセスも開発されています。また、銅フタロシアニン(CuPc)オリゴチオフェンなども物性が詳しく調べられているほか、高分子材料ではポリチオフェンなども有望視されています。

上からルブレン、ペンタセン

一方、n型半導体ではフラーレン誘導体や含フッ素化合物が主に研究されていますが、ペリレンカルボン酸ジイミドなども特殊な骨格を含まない材料として異彩を放っています。

ペリレンカルボン酸ジイミド

応用

キャリア移動度は有機半導体の性能指標としてよく用いられ、数値が高いほど高度な用途への利用が期待できます。各用途との対応は概ね以下の通りです。

0.1~1 cm2/V s : E-inkやディスプレイ、電子ペーパー

1~10 cm2/V s : 電子タグやICカード

>100 cm2/V s : CPU等の論理演算

現在研究されている主な用途としては、無機半導体における電界効果型トランジスタ(FET)を有機半導体で構築した有機電界効果型トランジスタ(OFET)や、発光ダイオード(LED)に対応した有機EL(OLED)、太陽電池に対する有機太陽電池(OSC)などが挙げられます。このうちOLEDはスマートフォンのディスプレイなどに広く実用化されています。一つ一つご紹介するには紙面が足りませんので、いずれ独立記事を執筆できればと思います。

有機半導体の強みはボトムアップ型の微細加工を可能にする点にありますが、その真価を発揮できる領域(論理演算デバイス)への応用にはキャリア移動度の向上と微細加工技術の発展が不可欠です。しばらくはこれらの分野を無機半導体が席巻する時代が続くと思われますが、将来が楽しみですね。

関連サイト

関連書籍

[amazonjs asin=”4781300308″ locale=”JP” title=”有機半導体の展開 (CMCテクニカルライブラリー)”] [amazonjs asin=”4061543547″ locale=”JP” title=”有機半導体のデバイス物性 (KS物理専門書)”] [amazonjs asin=”462108870X” locale=”JP” title=”有機半導体の基盤と原理”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 有機合成化学協会誌2020年3月号:電子欠損性ホウ素化合物・不斉…
  2. 求電子的インドール:極性転換を利用したインドールの新たな反応性!…
  3. 2021年ノーベル化学賞は「不斉有機触媒の開発」に!
  4. 外部の分析機器を活用する方法
  5. 三つの環を一挙に構築! caulamidine 類の不斉全合成
  6. 付設展示会に行…けなくなっちゃった(泣)
  7. フッ化セシウムをフッ素源とする立体特異的フッ素化有機分子の合成法…
  8. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~

注目情報

ピックアップ記事

  1. 佐治木 弘尚 Hironao Sajiki
  2. 初めての減圧蒸留
  3. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ④
  4. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治療薬を発売
  5. 不斉ストレッカー反応 Asymmetric Strecker Reaction
  6. ジャン=マリー・レーン Jean-Marie Lehn
  7. 化学に関する様々なサブスクリプション
  8. 三和化学と住友製薬、糖尿病食後過血糖改善剤「ミグリトール」の共同販促契約を締結
  9. スーパーブレンステッド酸
  10. 化学コミュニケーション賞2022が発表

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP