[スポンサーリンク]

化学者のつぶやき

NMRの基礎知識【原理編】

[スポンサーリンク]

NMRとは核磁気共鳴 (Nuclear Magnetic Resonance)の略称です。ざっくりいうと構成原子の置かれた環境を1つ1つ区別して調べることができ、原子同士のつながり方もわかる測定法です。測定が簡便な割に多くの情報が得られるため、特に有機化合物を扱う分野では重宝されます。毎日10本を超える測定を行うことも珍しくありません。

本シリーズでは、NMRの原理から実例までをできるだけ分かりやすくご紹介したいと思います。今回は【原理編】です。

核磁気共鳴現象:その原理

原子核は正電荷をもち、自転しています(厳密にはコマのように歳差運動をしています)。これによって自ら磁場を発生させています。言い換えると、原子一つ一つは、小さな磁石とみなすことができます。このことを表すベクトル物理量を、核磁気モーメント(核スピン)と呼びます。

普通の状態だと原子核はランダムな方向で回転しますので、核スピンの向きは当然ばらばらです。しかし、外部から強力な磁場(強さB0)をかけてやると、核スピンは磁場と順並行(↑)または逆並行(↓)の2種類へと綺麗に整列してくれます。

このとき、逆並行(↓)の核スピン状態は、外部磁場と逆らう形になっているので、順並行(↑)に比べてエネルギーが高くなります。外部磁場の影響により、核スピンが2つのエネルギー順位へ分裂することをゼーマン分裂と呼びます。ゼーマン分裂状態になると、エネルギー差に相当する電磁波に対して系が共鳴する(≒特定の波長をもつ光で高エネルギー状態へ励起される)ようになります。これこそが核磁気共鳴と呼ばれる現象です。

NMRの場合、このエネルギーがラジオ波領域(波長=1 m~100 km)に相当します。様々な波長のラジオ波をパルスとして一挙に当ててやると、上記エネルギー差に相当する波長のみで吸収が起こります。この様子を解析してやることで、核スピン(≒原子核)の置かれた状態が分かるのです。

測定装置

NMR測定装置は、大まかに①超伝導磁石(磁場発生部) ②分光計(ラジオ波照射・信号受信部) ③コンピューター(操作及びデータ処理部)に分かれます。

NMR装置の構成(JEOL RESONANCEのページより引用)

サンプル挿入・測定時の状態を模式的に表すと、下図のようになります。

サンプル管に磁場をかけ、高周波発振器によってラジオ波をあてると、上述の原理に従って核磁気共鳴が起こります。このとき、試料を取り巻いているコイルに微小な誘導電流が放出されるので、増幅器を経由させて自由誘導減衰(FID)信号としてこれを記録します。

実際には、FIDは様々な波形の重ね合わせとして記録されますので、コンピュータで波数成分ごとに分離(フーリエ解析)してやります。そうすると、我々の目になじみ深いNMRチャートが得られてきます。

左:FID信号、右:フーリエ変換後のNMRチャート(こちらのページより引用)

 

測定できる核種

原理の項で既に述べたとおり、NMR現象には核スピンの存在が必要です。核スピンの有無は、スピン量子数(Iという物理量で判断できます。

この値は、原子核に含まれる陽子数・中性子数が奇数か偶数かに依っています(下表)。質量数が奇数であれば、I=1/2,1,3/2・・・などのように、整数値か半整数値をとります。偶数であれば、I = 0,1,2・・・のように0か整数値をとります。

質量数 原子番号 スピン量子数 I 核種の例
奇数 奇数、偶数 半整数(1/2,2/3,2/5,…) 1H,15N,13C,17O,19F,31P,129Xe,…
偶数 偶数 12C,16O, 28Si, 32S,…
偶数 奇数 整数(1、2、3、…) 2D,14N,…

ここで重要なことは、スピン量子数= 0の核種は核スピンを持たないので、核磁気共鳴を示さないという事実です。たとえば、上表の12C, 16O, 28Si, 32S などはI = 0となる典型核種なので、NMRの測定ができません。逆にそれ以外の核種は測定できます。

有機化合物の測定で最もよく用いられる核種は、水素核1H炭素核13Cです(どちらも= 1/2)。

水素核1Hは天然同位体存在比がほぼ100%であり、なおかつ最も感度のよい核の一つです。このため、試料が数mgあれば十分きれいなスペクトルが得られます。

他方、炭素核13Cの天然同位体存在比は1.1%(I = 0である12Cが大半を占める)であり、また感度も1Hの1/4ほどしかありません。このため一般に13C-NMRは非常に微弱な信号として観測されるのみで、測定には多めのサンプルを必要とします。

さて、おおまかな原理は以上です。次回の【測定・解析編】へと続きます。

(執筆 ブレビコミン・ボンビコール、2018/1/6 加筆修正 cosine)
※本記事はHTML版記事に加筆修正を加え、ブログに転記したものです

関連書籍

[amazonjs asin=”475980787X” locale=”JP” title=”これならわかるNMR―そのコンセプトと使い方”][amazonjs asin=”4807909169″ locale=”JP” title=”有機化合物のスペクトルによる同定法 (第8版)”] [amazonjs asin=”4759820000″ locale=”JP” title=”NMR入門: 必須ツール 基礎の基礎 (Chemistry Primer Series)”][amazonjs asin=”4759811931″ locale=”JP” title=”有機化学のためのスペクトル解析法-UV、IR、NMR、MSの解説と演習”]

ケムステ内関連記事

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 原子3個分の直径しかない極細ナノワイヤーの精密多量合成
  2. 日本入国プロトコル(2022年6月末現在)
  3. 投票!2014年ノーベル化学賞は誰の手に??
  4. 2024年の化学企業グローバル・トップ50
  5. ホウ素の力でイオンを見る!長波長光での観察を可能とするアニオンセ…
  6. プロワイプ:実験室を安価できれいに!
  7. 私がなぜケムステスタッフになったのか?
  8. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

注目情報

ピックアップ記事

  1. 3つのラジカルを自由自在!アルケンのアリール–アルキル化反応
  2. 生体分子機械の集団運動の制御に成功:環境適応能や自己修復機能の発見
  3. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part1
  4. 決め手はケイ素!身体の中を透視する「分子の千里眼」登場
  5. 偽造ウイスキーをボトルに入れたまま判別する手法が開発される
  6. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click反応
  7. 共有結合で標的タンパク質を高選択的に機能阻害する新しいドラッグデザイン
  8. 化学系学生のための企業合同説明会
  9. ご注文は海外大学院ですか?〜出願編〜
  10. ブレビコミン /Brevicomin

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP