[スポンサーリンク]

化学者のつぶやき

NMRの基礎知識【原理編】

[スポンサーリンク]

NMRとは核磁気共鳴 (Nuclear Magnetic Resonance)の略称です。ざっくりいうと構成原子の置かれた環境を1つ1つ区別して調べることができ、原子同士のつながり方もわかる測定法です。測定が簡便な割に多くの情報が得られるため、特に有機化合物を扱う分野では重宝されます。毎日10本を超える測定を行うことも珍しくありません。

本シリーズでは、NMRの原理から実例までをできるだけ分かりやすくご紹介したいと思います。今回は【原理編】です。

核磁気共鳴現象:その原理

原子核は正電荷をもち、自転しています(厳密にはコマのように歳差運動をしています)。これによって自ら磁場を発生させています。言い換えると、原子一つ一つは、小さな磁石とみなすことができます。このことを表すベクトル物理量を、核磁気モーメント(核スピン)と呼びます。

普通の状態だと原子核はランダムな方向で回転しますので、核スピンの向きは当然ばらばらです。しかし、外部から強力な磁場(強さB0)をかけてやると、核スピンは磁場と順並行(↑)または逆並行(↓)の2種類へと綺麗に整列してくれます。

このとき、逆並行(↓)の核スピン状態は、外部磁場と逆らう形になっているので、順並行(↑)に比べてエネルギーが高くなります。外部磁場の影響により、核スピンが2つのエネルギー順位へ分裂することをゼーマン分裂と呼びます。ゼーマン分裂状態になると、エネルギー差に相当する電磁波に対して系が共鳴する(≒特定の波長をもつ光で高エネルギー状態へ励起される)ようになります。これこそが核磁気共鳴と呼ばれる現象です。

NMRの場合、このエネルギーがラジオ波領域(波長=1 m~100 km)に相当します。様々な波長のラジオ波をパルスとして一挙に当ててやると、上記エネルギー差に相当する波長のみで吸収が起こります。この様子を解析してやることで、核スピン(≒原子核)の置かれた状態が分かるのです。

測定装置

NMR測定装置は、大まかに①超伝導磁石(磁場発生部) ②分光計(ラジオ波照射・信号受信部) ③コンピューター(操作及びデータ処理部)に分かれます。

NMR装置の構成(JEOL RESONANCEのページより引用)

サンプル挿入・測定時の状態を模式的に表すと、下図のようになります。

サンプル管に磁場をかけ、高周波発振器によってラジオ波をあてると、上述の原理に従って核磁気共鳴が起こります。このとき、試料を取り巻いているコイルに微小な誘導電流が放出されるので、増幅器を経由させて自由誘導減衰(FID)信号としてこれを記録します。

実際には、FIDは様々な波形の重ね合わせとして記録されますので、コンピュータで波数成分ごとに分離(フーリエ解析)してやります。そうすると、我々の目になじみ深いNMRチャートが得られてきます。

左:FID信号、右:フーリエ変換後のNMRチャート(こちらのページより引用)

 

測定できる核種

原理の項で既に述べたとおり、NMR現象には核スピンの存在が必要です。核スピンの有無は、スピン量子数(Iという物理量で判断できます。

この値は、原子核に含まれる陽子数・中性子数が奇数か偶数かに依っています(下表)。質量数が奇数であれば、I=1/2,1,3/2・・・などのように、整数値か半整数値をとります。偶数であれば、I = 0,1,2・・・のように0か整数値をとります。

質量数 原子番号 スピン量子数 I 核種の例
奇数 奇数、偶数 半整数(1/2,2/3,2/5,…) 1H,15N,13C,17O,19F,31P,129Xe,…
偶数 偶数 12C,16O, 28Si, 32S,…
偶数 奇数 整数(1、2、3、…) 2D,14N,…

ここで重要なことは、スピン量子数= 0の核種は核スピンを持たないので、核磁気共鳴を示さないという事実です。たとえば、上表の12C, 16O, 28Si, 32S などはI = 0となる典型核種なので、NMRの測定ができません。逆にそれ以外の核種は測定できます。

有機化合物の測定で最もよく用いられる核種は、水素核1H炭素核13Cです(どちらも= 1/2)。

水素核1Hは天然同位体存在比がほぼ100%であり、なおかつ最も感度のよい核の一つです。このため、試料が数mgあれば十分きれいなスペクトルが得られます。

他方、炭素核13Cの天然同位体存在比は1.1%(I = 0である12Cが大半を占める)であり、また感度も1Hの1/4ほどしかありません。このため一般に13C-NMRは非常に微弱な信号として観測されるのみで、測定には多めのサンプルを必要とします。

さて、おおまかな原理は以上です。次回の【測定・解析編】へと続きます。

(執筆 ブレビコミン・ボンビコール、2018/1/6 加筆修正 cosine)
※本記事はHTML版記事に加筆修正を加え、ブログに転記したものです

関連書籍

[amazonjs asin=”475980787X” locale=”JP” title=”これならわかるNMR―そのコンセプトと使い方”][amazonjs asin=”4807909169″ locale=”JP” title=”有機化合物のスペクトルによる同定法 (第8版)”] [amazonjs asin=”4759820000″ locale=”JP” title=”NMR入門: 必須ツール 基礎の基礎 (Chemistry Primer Series)”][amazonjs asin=”4759811931″ locale=”JP” title=”有機化学のためのスペクトル解析法-UV、IR、NMR、MSの解説と演習”]

ケムステ内関連記事

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機合成化学協会誌2022年8月号:二酸化炭素・アリル銅中間体・…
  2. ポンコツ博士の海外奮闘録XVII~博士,おうちを去る~
  3. 一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化
  4. アメリカ化学留学 ”立志編 ーアメリカに行く前に用意…
  5. アミジルラジカルで遠隔位C(sp3)-H結合を切断する
  6. プロセス化学ー合成化学の限界に挑戦するー
  7. ChatGPTが作った記事を添削してみた
  8. ケムステチャンネルをチャンネル登録しませんか?

注目情報

ピックアップ記事

  1. 向かい合わせになったフェノールが織りなす働き
  2. 石油化学プラントの設備内部でドローンを飛行する実証事業を実施
  3. 水分解 water-splitting
  4. ヒューマンエラーを防ぐ知恵 増補版: ミスはなくなるか
  5. 有機合成化学協会誌2021年5月号:『有機合成のブレークスルー』合成反応の選択性制御によるブレークスルー
  6. バリー・シャープレス Karl Barry Sharpless
  7. つり革に つかまりアセる ワキ汗の夏
  8. 化学者のためのエレクトロニクス講座~電解金めっき編~
  9. 有機反応を俯瞰する ーヘテロ環合成: C—X 結合で切る
  10. 2-(トリメチルシリル)エトキシカルボニル保護基 Teoc Protecting Group

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP