[スポンサーリンク]

化学者のつぶやき

既存の農薬で乾燥耐性のある植物を育てる

[スポンサーリンク]

 

現在地球上の人類の6人に1人が砂漠化の影響を受けていると言われています。科学的な見地からの砂漠を含めた乾燥地の緑化は、様々な意見があるとは思いますが、地球温暖化や食糧問題の解決のために推進すべき研究の1つだと思います。

さて、今回刻一刻と広がっている砂漠化に歯止めをかけれるかもしれない、乾燥耐性のある植物を育てる試みとして、新しい手法が報告されていましたので紹介したいと思います。

 

気孔ー植物の呼吸口

植物は気孔とよばれる2つの孔辺細胞にかこまれた小さな孔をもちます。植物は環境変化に応じてこの孔を開閉し、光合成に必要な二酸化炭素の取り込みや蒸散などの植物と大気間のガス交換を調節しています(図 1a)。この気孔の閉鎖を制御している植物ホルモンがアブシシン酸(ABA)です(図 1b)。乾燥ストレスをうけた植物はABAを生合成することで気孔を閉じ、体内からの水の蒸散量を抑え乾燥から身を守っています。

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

図1 a) 気孔とガス交換、b) ABAによる気孔閉口

 

ABAの作用機序を解明する

ABAは今から50年以上前の1963年に発見されていましたが、ABAがどのタンパク質に作用して気孔の開閉に関与するのか全くの謎でした。

その作用機序を解明するために、受容タンパク質の単離に成功したのがABAの発見から50年以上を経た2009年。その理由は機能が重複した複数の受容体が存在するためでした。この冗長性を回避するため、米国カリフォルニア大学リバーサイド校の若手科学者Cutlerらのグループは化学遺伝的(ケミカルジェネティクス)スクリーニングにおいて、単一もしくは数個の受容体を標的とする分子(選択的アゴニスト)を用いることで同定を試みたのです。

詳細は述べませんが、CutlerらはABAの受容体タンパク質PYR1を初めて同定することに成功しました。[1]この研究により、PYR1によるABAの受容が気孔の閉鎖を引き起こすことが明らかになりました。

 

PYR1アゴニストの開発の難航

標的タンパク質が決まれば、高価で入手困難なABAにかわり、PYR1に結合して機能する小分子(PYR1アゴニスト)を作ることで、植物を乾燥から守ることができます。しかし、新しい農薬の開発と認可の獲得には通常、約10年以上の期間が必要とされており、早急な実現は困難でした。

一方で、入手容易で安全性が実証されている既存の農薬をABAの代わりにもちいることができれば、開発、認可を減ることなく、乾燥地帯での農業に大きく貢献できます。

 

PYR1を既存の農薬用に”改変する”

その方法の1つとして、Cutlerらは、PYR1のABA結合部位の立体構造を既存の農薬に合わせて新しく作りかえることで、既存の農薬をABAの代わりとして使うことを考えたのです。

しかし、「言うは易し、行なうは難し」が研究にはつきものです。

改変したPYR1がABAと結合してしまうと、植物が自ら産生するABAと農薬が競合してしまいます。そのため、目的とする改変タンパク質はABAと結合しないことが求められます。

これまでの研究で、59番目のリシン残基(59K)はABAのカルボン酸部位との結合に重要であることが知られていました。

彼らはリシン残基(59K)をアルギニン(R)に置換すると、ABAとの結合力が大きく低下することを見出しました。さらにリシン残基(59K)をアルギニン(R)に置換したPYR1(K59R)のアミノ酸残基をいくつか置換することで、ついに、ABAに結合しないが、mandipropamid(既存の市販農薬)には結合できるPYR1MANDIを開発することに成功しました(図2、図3)。[2]

 

図2. ABAとPYR1の結晶構造(左図)、mandipropamideとPYR1MANDIの結晶構造(右図)

図2. ABAとPYR1の結晶構造(左図)、mandipropamidとPYR1MANDIの結晶構造(右図)

 

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamide-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamide存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

図3ABAとPYR1が結合すると脱リン酸化酵素PP2Cと複合体を形成し、PP2Cの脱リン酸化活性を阻害する。a) yeast-two hybrid法を用いたmandipropamid-PYR1MANDI-PP2C形成の評価。複合体が形成されると酵母が青く染まる。 b) PYR1MANDIとmandipropamid存在下のPP2C脱リン酸化活性の評価。c)Pull-down アッセイ。HisタグのついたGFP-PYR1MANDI融合タンパク質とGFP-PP2C融合タンパク質を共発現させたタバコを用いて、葉の抽出液からアフィニティ精製したタンパク質をSDS-PAGEによって分離し、GFP抗体を用いてPYR1とPP2Cを検出している。

 

PYR1MANDIの能力はいかに?

開発したPYR1MANDIを遺伝子組み換え技術によりトマトとシロイヌナズナにそれぞれ導入し、得られた遺伝子組み換えトマトとシロイヌナズナを用いてmandipropamid存在下での葉の温度を測定したところ、気孔が閉鎖し蒸散量が低下したことに由来する温度上昇が観測されました(図 4a,b)。さらに、乾燥環境下におけるPYR1MANDIの組み換えシロイヌナズナの生育を観察したところ、mandipropamid存在下で優れた乾燥耐性が確認されました (図 4c)。

 

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamide存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamide存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamide存在下での乾燥耐性の評価。

図4. a) PYR1MANDIの組み換えシロイヌナズナを用いた、mandipropamid存在下での葉温測定。b) PYR1MANDIの組み換えトマトを用いた、mandipropamid存在下での葉温測定。c) PYR1MANDIの組み換えシロイヌナズナを用いたmandipropamid存在下での乾燥耐性の評価。

 

今後の展開

もちろん遺伝子組み換えですので、食物に使うことは憚られます。そのため、主なターゲットは砂漠の緑化など食べない植物になります。今後、彼らの開発した技術による乾燥地の緑化と農業開発への展開を期待したいとお思います。

 

関連文献

  1. Sang-Youl Park et al. Science 2009 DOI: 10.1126/science.1173041
  2. Park, S.-Y.; Peterson, F. C.; Mosquna, A.; Yao, J.; Volkman, B. F.; Cutler, S. R. Nature 2015, DOI: 10.1038/nature14123

 

外部リンク

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. OIST Science Challenge 2022 (オンラ…
  2. こんな装置見たことない!化学エンジニアリングの発明品
  3. アンモニアの安全性あれこれ
  4. 第20回次世代を担う有機化学シンポジウム
  5. 流れる電子ッ!壊れるピリジンッ!含窒素多環式骨格構築!
  6. 実験メガネを15種類試してみた
  7. リチウムを用いたメカノケミカル脱水素環化法によるナノグラフェン合…
  8. 親子で楽しめる化学映像集 その1

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 単一分子の電界発光の機構を解明
  2. 化学者ネットワーク
  3. まんがサイエンス
  4. 第10回慶應有機化学若手シンポジウム
  5. 肺がん治療薬イレッサ「使用制限の必要なし」 厚労省検討会
  6. ヴィンス・ロテロ Vincent M. Rotello
  7. ReadCubeを使い倒す(3)~SmartCiteでラクラク引用~
  8. 硤合不斉自己触媒反応 Soai Asymmetric Autocatalysis
  9. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  10. ヤモリの足のはなし ~吸盤ではない~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年4月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

【十全化学】核酸医薬のGMP製造への挑戦

「核酸医薬」と聞いて、真っ先に思い起こすのは、COVID-19に対するmRNAワ…

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー

開催日:2024/03/27 申込みはこちら■開催概要材料開発を取り巻く競争や環境が激し…

石谷教授最終講義「人工光合成を目指して」を聴講してみた

bergです。この度は2024年3月9日(土)に東京工業大学 大岡山キャンパスにて開催された石谷教授…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP