[スポンサーリンク]

化学者のつぶやき

歪んだアルキンへ付加反応の位置選択性を予測する

[スポンサーリンク]

歪んだアルキンといえばどんな構造を考えるでしょうか?今回はベンザインと環状アルキンなどの歪んだアルキンへの付加反応の位置選択性に関して、最近提唱されている解釈法について少し説明したいと思います。

 

歪んだ三重結合をもった芳香環「アライン」

ベンゼンの1つの水素原子とオルト位の水素原子を取り除いたo-ベンザインは、三重結合が安定な直線構造から大きく歪んでいることから、極めて高い反応性(不安定性)を示します。同様にナフタレン・ピリジン・インドールとベンゼン以外の芳香環から2つの水素原子を取り除いた化学種は、総じてアライン(aryne)類と称されており、有機合成化学において重要な反応活性種として頻繁に用いられています。

アライン類

アライン類

アラインの付加反応の位置選択性を理解する

最近、アラインの性質、特に位置選択性に関する統一的な解釈法を提示し、合成化学への応用を試みているのが合成化学者Gargと計算化学者Houkです。2010年に彼らは、インドラインに対する付加反応の位置選択性を”distortion/interaction model”‘(歪曲/インタラクションモデル) で予測可能であることを報告しました。[1]

 

アラインの”distortion/interaction model”

非対称なアラインは、周りの置換基やヘテロ原子によって”歪み方”(結合角)が異なる。その歪み構造は計算化学で予測することが容易であり、予測したアラインの構造において、直線性の高い炭素、すなわち結合角が大きい炭素で付加反応が進行することを明らかとした。例えば、4,5-インドラインの構造は5位が129º、4位が125ºの結合角を有している。結合角の大きい炭素で反応が進行するため、アニリンの付加反応はC5位選択的に進行する。

インドラインへの付加反応における位置選択性

インドラインへの付加反応における位置選択性

 

なぜ、アラインの歪み方が異なるのか?

ではそもそも、なぜ置換基あるいはヘテロ原子によってアラインが歪むのだろうか?それは、電気陰性度の違いに起因しています。一例として3-fluorobenzyneでは、フッ素の誘起効果によりC2位はC3位に比べて電子密度が低くなります。その結果、C3位の結合性軌道の電子密度が相対的に高くなり、電子密度を安定化するために結合を形成する軌道のs性が増加します。それに伴い軌道の再混成が行われ、アラインの結合角に差異が生じます。その歪みはC3位のp軌道のp性を高くし、d+性を帯びるためC3位で付加反応が進行すると考えられます。

3-fluorobenzeneへの付加反応の位置選択性の説明

3-fluorobenzyneへの付加反応の位置選択性の説明

本解釈を基に、彼らはピリダイン、置換ベンザインの位置選択性の理由ついても矢継ぎ早に報告しました。[2]現在では、計算化学でアラインの構造を予測、置換基で構造を最適化するだけで、付加反応の位置選択性を予測することが可能となっています。[3]

2015-04-13_13-45-04

 

ピペリダインの発生と性質解明

ではこの理論はアラインだけでなく歪んだアルキンに対する付加反応の位置選択性にも適用できるのでしょうか?[4]  ごく最近、彼らは、3.4-ピペリダインを初めて発生させることに成功したのみならず、本解釈法を用いた3,4-ピペリダインへの付加反応の位置発現の理由および、3,4-ピリダインと大きく異なる理由について説明しました。[5]

3,4-ピペリダインと3,4-ピリダインの最適化構造を比較すると、3,4-ピペリダインはより歪んでいることがわかります。彼らのdistortion modelに基づけば、3,4-ピペリダインを用いた場合により位置選択的に付加反応が進行することを示唆している。すなわち、3,4-ピペリダインに対する付加反応の位置選択性を研究することによって、最終的に3,4-ピリダインが「なぜ歪んでいないのか」、「なぜ位置選択的に付加反応が進行しないのか」という問題を明らかにできると考えました。

 

2015-04-13_13-56-07

3.4-ピペリダインと3,4-ピリダインの計算化学による構造最適化後の構造(出典:論文[5])

そこで3,4-ピペリダイン前駆体を合成し、3,4-ピペリダインの付加環化反応および付加反応を行いました。結果をまとめると、

(1) 3,4-ピペリダインと3,4-ピリダインのどちらにおいてもC4位選択的に付加反応が進行する

(2) 3,4-ピペリダインを用いた場合により優れた位置選択性を示す

ことが明らかとなりました。これはdistortion modelの予想とよく一致する結果となっています。

続いて、ピリダイン、ピペリダインに対するモルホリンの求核付加反応についてDFT計算を用いて遷移状態を算出しています。論文(Figure3)を見ると明らかなように、3,4-ピリダインのC3位およびC4位への付加にほとんどエネルギー差はなく、それは位置選択性が低いことと一致しています。一方、3.4-ピペリダインにおいてはC3位およびC4位への付加に比較的大きなエネルギー差があるため、位置選択的にC4位に付加が進行している結果とよく一致しています。

 

ピリダインへの付加反応が低い位置選択性で進行する理由

最後に3,4-ピリダインに対する付加反応が低い位置選択性で進行する理由をdistortion modelを用いて解明しています。ピリダイン、ピペリダインともに窒素原子による誘起効果は存在します。しかし、ピリダインは平面であるために、窒素原子の非共有電子対(n軌道)とπ*軌道で相互作用し、安定化が起きます。この相互作用を最安定化するためにC3位の炭素は窒素原子に近接します。この相互作用と誘起効果は、それぞれ逆の方向に歪みを生むため結果として相殺されます。その結果、ピリダインの歪みは小さくなります。 一方、3,4-ピペリダインではn軌道とπ*軌道は直交しているために、このような相互作用はなく、誘起効果によってのみ歪みが生じます。このようにして、3,4-ピリダインの低い位置選択性が説明できます。

 

3,4-ピリダインに対する付加反応が低い位置選択性で進行する理由

3,4-ピリダインに対する付加反応が低い位置選択性で進行する理由

 

詳細は述べませんでしたが、サクサクっと未踏の3,4-ピペリダインを合成してしまうところがよい合成化学者の強みですね。また、同じ学科に、世界トップクラスの計算化学者が在籍し、使える解釈法を共同研究で提示できたため、非常にわかりやすくくなっています。彼らのdistortion/intraction modelの一般性は極めて高く、アライン類に加えて、今回の例のように、環状アルキンにまで応用の場を広げている。本手法を用いてすでに天然物合成にも応用されており、今後どのように本手法が展開されていくかが楽しみです。

 

関連文献

  1.  Cheong, P. H.-Y.; Paton, R. S.; Bronner,S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 1267. DOI: 10.1021/ja9098643
  2. (a) Bronner, S. M.; Mackey, J. L.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2012134, 13966. DOI: 10.1021/ja306723r (b) Goetz, A. E.; Garg, N. K. Nat. Chem. 20135, 54. DOI: 10.1038/nchem.1504 (c) Medina, J. M.; Mackey, J. L.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2014136, 15798. DOI: 10.1021/ja5099935
  3. Picazo, E.; Houk, K. N.; Garg, N. K. Tetrahedron Lett. 2015. ASAP. DOI: 10.1016/j.tetlet.2015.01.022
  4. ごく最近、シクロヘキシンとシクロペンチンへの付加反応の位置選択性を、本手法により説明している。 Medina, J. M.; McMahon, T. C.; Jiménez-Osés, G.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2014, 136, 14706. DOI: 10.1021/ja508635v
  5.  McMahon, T. C.; Medina, J. M.; Yang, Y. F.; Simmons, B. J.; Houk, K. N. Garg, N. K. J. Am. Chem. Soc. 2015, 137, 4082. DOI: 10.1021/jacs.5b01589

外部リンク

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 水分解反応のしくみを観測ー人工光合成触媒開発へ前進ー
  2. マタタビの有効成分のはなし【更新】
  3. 鉄系超伝導体の臨界温度が4倍に上昇
  4. 日化年会に参加しました:たまたま聞いたA講演より
  5. ノーベル賞化学者に会いに行こう!「リンダウ・ノーベル賞受賞者会議…
  6. 2つのアシロイン縮合
  7. 未来の科学者を育てる政策~スーパーサイエンスハイスクール(SSH…
  8. 病理学的知見にもとづく化学物質の有害性評価

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 超若手科学者の発表会、サイエンス・インカレの優秀者インタビュー
  2. 比色法の化学(前編)
  3. 積水化学、工業用接着剤で米最大手と提携
  4. 第十二回ケムステVシンポ「水・有機材料・無機材料の最先端相転移現象 」
  5. 東海カーボンと三菱化学、カーボンブラックの共同会社を断念
  6. NICT、非揮発性分子を高真空中に分子ビームとして取り出す手法を開発
  7. 知的財産権の基礎知識
  8. ロバート・レフコウィッツ Robert J. Lefkowitz
  9. ハワイ州で日焼け止め成分に規制
  10. 有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PNNP四座配位子・π共役系有機分子・フェンタニル混入ヘロイン・プロオリゴ型核酸医薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年4月
« 3月   5月 »
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP