[スポンサーリンク]

一般的な話題

有機の王冠

[スポンサーリンク]

皆さんは「有機の王冠」を知っていますか?

それは冒頭図のような形をした美しい化合物のことです。名前もそのまま、クラウンエーテル(crown ether)と呼ばれています。

実はこの分子は何かと面白い性質を持つことが分かっています。今回はこの分子について簡単に紹介します。

王冠いろいろ

クラウンエーテルは1967年、Du Pont社の研究員Charles Pedersenによって発見されました。この分子はx-crown-y-etherという一般式で命名されます。xは環を構成する原子数、yは含まれる酸素原子の数です。

たとえば上の化合物では炭素・酸素あわせて18原子で環が構成され、そのうち6個が酸素原子なので18-crown-6-etherと命名されます。「18-crown-6」のように最後のetherは省略されることもしばしばあります。

クラウンエーテル類は環のサイズや構成成分・元素の違いなどにより、いろいろな種類が存在しています。

crown_ether_2

 

クラウンエーテルの合成

Pedersenは当初、化合物1の合成を目的として、下に示すような合成経路を考えました。このとき白色繊維状結晶の副生成物2がごく微量生成していることを発見しました。これがクラウンエーテルの起源です。セレンディピティとして知られる発見例の一つだったのです。

crown_ether_3

より一般的な合成法も、このPedersenの条件が基礎となっています。普通の条件では分子間反応が競合してオリゴマー・ポリマーが出来てくるのですが、環の径に合わせた金属カチオンを共存させておく工夫によって、分子内反応を優先させることができます。これを鋳型合成法と言います。下の場合はナトリウムカチオンが鋳型になっているわけですね。

templated_2
 

  クラウンエーテルの性質

クラウンエーテルの独特かつ面白い特性は、(上記の合成法からも想像がつくことですが)空孔のサイズに合った金属を非常に強く捕まえる(包摂する)ことにあります。たとえば無機化合物のKMnO4はイオン性化合物のため有機溶媒に不溶です。しかし、18-crown-6-etherが存在すると、カリウムイオンがクラウンエーテルに捕捉され、ベンゼンをはじめとする有機溶媒に溶けるようになります。

crown_ether_4

こうすることでKF、KCN、NaN3などに代表される難溶性アルカリ金属塩を有機溶媒中で効果的に用いることが出来るようになり、有機合成の技術が進みました。またクラウンエーテル包摂によって存在する対アニオンはほとんど溶媒和されていないため、非常に反応性が高くなります。クラウンエーテルという名称は、化合物の形状と、あたかもカチオンに冠をかぶせるかのごとく錯形成することの2点から名付けられたものです。

錯体の安定度は、金属カチオンのイオン径と、環の空孔径の相対的な大きさに依存します。たとえば15-crown-5-etherの穴の大きさはナトリウムイオンに対してちょうどよい大きさです。リチウムにフィットするクラウンエーテルもあります。

crown_ether_5
クラウンエーテルの性質とその有用性が明らかになるにつれ、多くの類縁体が合成されるに至りました。ドナー原子として酸素原子以外を含むものや、二環式・三環式の物質も合成されました。その中でも窒素を含むもので有名なものに、クリプタンド(cryptand)と呼ばれる化合物があります。ギリシア語で”空洞”を意味する名前を持ち、クラウンエーテル以上の強さで金属と錯形成して、塩を有機溶媒に可溶化させることができます。

cryptand_1

 

クラウン化合物の応用例

クラウンエーテル類は、そのユニークな特性を最大限に活用した各種応用に今日されています。

有機合成

有機合成へは最もよく使われます。重要なポイントは既に述べたとおり、(1)無機塩を非極性溶媒に可溶化させること、(2)溶媒和されていない対アニオンを作り出し、高活性な状態にすること、の二つです。

たとえば溶媒和されていないアニオンは嵩が小さいため、通常では立体障害が大きく攻撃しにくい反応点を攻撃することが可能となります。分極率の小さいいわゆる”hard”なアニオンほど活性化度が高くなる傾向にあります。たとえば普段は求核試薬にならないKFが、クラウンエーテルの添加によって求核置換を起こすようになるのは好例です。

また、相間移動触媒として働かせる事例も多数もあります。

 

イオン分離

クラウンエーテルの金属選択的錯形成能を利用して、金属イオンを分離する方法が初期に開発されました。選択性の高さが最大の長所です。その後、重合させることでイオン交換樹脂にしたものなども多数開発されました。

光学分割

クラウンエーテルが金属カチオンのみならず、一級アンモニウムカチオンなどとも相互作用できることがPederson自身によって見いだされました。その後、光学活性クラウンエーテルを用いたアミンの光学分割法が研究されました。

crown_ether_7

 

イオン運搬体としての利用

クラウンエーテルの選択性は、優れたイオン輸送体の可能性ととらえることもできます(同様の働きを示す化合物としてシクロデキストリンなどあります)。合成イオノフォアとして、生体内イオンの機能解明のツールへと応用すべく研究が進められてもいます。例えば以下は分子スイッチ部であるジアリールエテンを組み込み、光刺激によってイオンを捕まえたり離したり、ということを可能にしています。

crown_ether_9

 

独特の性質を持つ化合物、クラウンエーテル。構造の美しさもさることながら、非常に魅力たっぷりな分子だと思いませんか?

(※本記事は以前より公開されていたものを加筆修正し、「つぶやき」に移行したものです)

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前…
  2. 特許の基礎知識(1)そもそも「特許」って何?
  3. 【読者特典】第92回日本化学会付設展示会を楽しもう!PartII…
  4. 高純度フッ化水素酸のあれこれまとめ その2
  5. NMR Chemical Shifts ー溶媒のNMR論文より
  6. 第四回ケムステVシンポ「持続可能社会をつくるバイオプラスチック」…
  7. 生物に打ち勝つ人工合成?アルカロイド骨格多様化合成法の開発
  8. センター試験を解いてみた

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. メーヤワイン アリール化反応 Meerwein Arylation
  2. 友岡 克彦 Katsuhiko Tomooka
  3. 次世代シーケンサー活用術〜トップランナーの最新研究事例に学ぶ〜
  4. BASFクリエータースペース:議論とチャレンジ
  5. おまえら英語よりもタイピングやろうぜ ~上級編~
  6. 化学の成果で脚光を浴びた小・中・高校生たち
  7. 中性ケイ素触媒でヒドロシリル化
  8. 鬼は大学のどこにいるの?
  9. HOW TO 分子シミュレーション―分子動力学法、モンテカルロ法、ブラウン動力学法、散逸粒子動力学法
  10. (-)-ウシクライドAの全合成と構造決定

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2002年2月
« 10月   4月 »
 123
45678910
11121314151617
18192021222324
25262728  

注目情報

注目情報

最新記事

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況

当社のマイクロ波プラットフォーム技術および工業化知見を活用し、アクリル樹脂の分解に必要なエネルギーを…

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

ゼナン・バオ Zhenan Bao

ゼナン(Zhenan Bao, 1970年xx月xx日-)は、アメリカの有機材料科学者、カーボンナノ…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP