[スポンサーリンク]

化学者のつぶやき

アルカロイドの大量生産

[スポンサーリンク]

アルカロイドには強い生理活性を示すものも多く、医薬品のシード化合物としても注目を集めています。しかし、実験室で安価原料から合成することが難しい場合も多いため、植物抽出物などを原料として半合成されている例も多くあります。

植物は成長が遅いことから、需要に供給が追いつかないなどの問題も起きてしまいます。そのため最近では、以前の記事「砂糖水からモルヒネ?」で紹介したように、成長の遅い植物の遺伝子を成長の早い微生物へと導入し有用化合物を迅速かつ安価に大量生産しようという研究が盛んです。

今回はインドールアルカロイドの例をご紹介したいと思います。植物科学の研究で有名なジョイネスセンターのサラ・オコナー教授らのグループから報告されました。

“De novo production of the plant-derived alkaloid strictosidine in yeast“
Proc. Natl Acad. Sci. USA 112, 3205–3210 (2015). DOI: 10.1073/pnas.1423555112
Stephanie Brown, Marc Clastre, Vincent Courdavault, and Sarah E. O’Connor

Monoterpene Indole Alkaloids (MIA)

de_novo_alkaloid_1

モノテルペンインドールアルカロイド (以下 MIA) は、C10 のモノテルペン部分とトリプトファン由来のインドール部分からなるアルカロイドであり、主にキョウチクトウ科 (Apocynaceae)、マチン科 (Loganiaceae)、アカネ科 (Rubiaceae )、クロタキカズラ科 (Icacinaceae)、ヌマミズキ科 (Nyssaceae)、ウリノキ科 (Alangiaceae) などから単離されます。MIA には強い生理活性を示すものも多く、vinblastine、vincristine、vinflunine など抗がん剤として認可されているものもあります。

MIA は、植物内にて共通の中間体 Strictosidine を共通の中間体として生合成されます。共通の中間体から多種多様な構造を生み出す分子多様性メカニズムは合成化学の面からも注目されています(上図)。先日紹介したヘテロヨヒンビンもその一つです。

一見してわかる通り、これら複雑骨格化合物を実験室で合成することは、現在の有機合成化学の技術をもってしても簡単ではありません。そのため、植物から抽出した中間体を用いた半合成による供給方法なども工業的には採用されています。しかし、植物は成長するのが遅い&場所をとるため、大量・安価・迅速な供給には問題があります。そのため、代替法の開発が求められているのが現状です。

GPP synthase

今回紹介する論文では 21 個の遺伝子の導入と 3 個の遺伝子の破壊により MIA の共通中間体である Strictosidine を 0.5 mg/l の収量で作り出すことに成功しています。培地と構築した酵母のみで Strictosidine がこれだけの量取れるというのは学術的にも工業的にも素晴らしい成果です。ちなみに Strictosidine の前駆体である secologanin は 10 mg で約 1 万円です。

また、以前紹介した酵母でのオピオイド化合物生産系では、培地に基質である砂糖を添加しなければいけませんでした。今回紹介する論文は、”De novo” とタイトルが付いていることからも分かる通り、基質の添加の必要がありません!!

de_novo_alkaloid_2

(図は論文より)

 

“21 個の遺伝子導入”と書くと簡単なように聞こえますが、論文を読むとそこにたどり着くまでにたくさんの壁があったことが分かります。
酵母では、メバロン酸経路によってGPP が合成され、MIA のテルペン部分はその GPP を基質として合成されます。つまり Strictosidine の収量を上げるためには GPP の収量を上げることが必須です!そこで著者らは (i)フィードバック阻害を受けない HMG還元酵素の遺伝子 tHMGR を導入、(ii) IPP の異性化酵素をコードしている遺伝子 IDI1 を導入 (iii) tRNA の合成を抑制する遺伝子 MAF1 を導入しました(IPP は GPP と tRNA の両方の合成に使われてしまうため、tRNA 合成を抑制しないと GPP の収量が上がらない)。また、遺伝子発現を安定させるために、導入する遺伝子はすべて相同組み替えにより酵母のゲノムへと入れられています。

しかし、思ったように GPP の収量は上がりませんでした。

そこで、注意深く酵母の経路を見直してみると FPP 合成酵素が関係しているのではないかとの考えに行き着きました。FPP 合成酵素は、C10 の GPP も合成しますが、 C15 のFPP の方を優先的に合成します。そこで、FPP 合成酵素をコードしている ERG20 を破壊し、代わりにアメリカオオモミ由来の AgGPPS とセキショウヤケイ由来の mFPS144 を導入しました。すると GPP の収量の増加が見られました。

Geraniol 8-Hydroxylase (G8H)

植物内で GPP は 9 ステップの反応により secologanin へと変換されます。この反応のうちのいくつかは酸化酵素 P450 に触媒されており、酸化還元サイクルを効率良く回すためには還元酵素が必要です。そこで著者らは CYB5 と CPR も導入することにしました。

しかし、必要遺伝子をすべて導入した酵母の代謝物を調べてみると strictosidine はおろか secologanin さえも合成されていませんでした。そこで、一つずつ中間体を培地に添加して strictosidine が生産されるかを調べました。(地道な実験!)

すると 8 –hydroxygeraniol を添加した際にはsecologanin が生産されているのに、geraniol を添加した際には生産されませんでした。つまり、geraniol を基質とする酵素 G8H が機能していないことがわかりました。G8H を持つプラスミドを導入して実験すると酵母が strictosidine を生産していることがわかりました。

まとめ

以上紹介した本論文のごく一部であり、上記以外の細かいことも論文中には書かれており、非常に地道な検討の繰り返しによりすばらしい成果が出るということを改めて実感しました。
MIA では、Strictosidine 以降の酵素・遺伝子は未だに未解明なものが多く、アルカロイドの生合成研究はまだまだ謎がいっぱいです。しかし、今回の論文で構築した酵母を応用することにより、生合成候補遺伝子のアッセイが楽になったり、将来的なアルカロイドの大量生産につながったりすることが期待できます。このような手法が確立され、医薬品が世界中に行き届くようになることを願ってます。

Avatar photo

ゼロ

投稿者の記事一覧

女の子。研究所勤務。趣味は読書とハイキング ♪
ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」①
  2. 第35回ケムステVシンポ「有機合成が拓く最先端糖化学」を開催しま…
  3. 科学を魅せるーサイエンスビジュアリゼーションー比留川治子さん
  4. 禅問答のススメ ~非論理に向き合う~
  5. 合格体験記:知的財産管理技能検定~berg編~
  6. 遷移金属を用いない脂肪族C-H結合のホウ素化
  7. 第八回ケムステVシンポジウム「有機無機ハイブリッド」を開催します…
  8. 島津製作所がケムステVシンポに協賛しました

注目情報

ピックアップ記事

  1. 宮浦・石山ホウ素化反応 Miyaura-Ishiyama Borylation
  2. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治療薬を発売
  3. 世界最高の耐久性を示すプロパン脱水素触媒
  4. リピンスキーの「ルール・オブ・ファイブ」 Lipinski’s “Rule of Five”
  5. 有機合成化学協会誌2022年4月号:硫黄置換基・デヒドロアミノ酸・立体発散的スキップジエン合成法・C-H活性化・sp3原子含有ベンゾアザ/オキササイクル
  6. 単一分子を検出可能な5色の高光度化学発光タンパク質の開発
  7. ケミストリー四方山話-Part I
  8. 産業界のニーズをいかにして感じとるか
  9. ハニートラップに対抗する薬が発見される?
  10. ベンゼンの害、低濃度でも 血液細胞に損傷

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP