[スポンサーリンク]

化学者のつぶやき

アルカロイドの大量生産

アルカロイドには強い生理活性を示すものも多く、医薬品のシード化合物としても注目を集めています。しかし、実験室で安価原料から合成することが難しい場合も多いため、植物抽出物などを原料として半合成されている例も多くあります。

植物は成長が遅いことから、需要に供給が追いつかないなどの問題も起きてしまいます。そのため最近では、以前の記事「砂糖水からモルヒネ?」で紹介したように、成長の遅い植物の遺伝子を成長の早い微生物へと導入し有用化合物を迅速かつ安価に大量生産しようという研究が盛んです。

今回はインドールアルカロイドの例をご紹介したいと思います。植物科学の研究で有名なジョイネスセンターのサラ・オコナー教授らのグループから報告されました。

“De novo production of the plant-derived alkaloid strictosidine in yeast“
Proc. Natl Acad. Sci. USA 112, 3205–3210 (2015). DOI: 10.1073/pnas.1423555112
Stephanie Brown, Marc Clastre, Vincent Courdavault, and Sarah E. O’Connor

Monoterpene Indole Alkaloids (MIA)

de_novo_alkaloid_1

モノテルペンインドールアルカロイド (以下 MIA) は、C10 のモノテルペン部分とトリプトファン由来のインドール部分からなるアルカロイドであり、主にキョウチクトウ科 (Apocynaceae)、マチン科 (Loganiaceae)、アカネ科 (Rubiaceae )、クロタキカズラ科 (Icacinaceae)、ヌマミズキ科 (Nyssaceae)、ウリノキ科 (Alangiaceae) などから単離されます。MIA には強い生理活性を示すものも多く、vinblastine、vincristine、vinflunine など抗がん剤として認可されているものもあります。

MIA は、植物内にて共通の中間体 Strictosidine を共通の中間体として生合成されます。共通の中間体から多種多様な構造を生み出す分子多様性メカニズムは合成化学の面からも注目されています(上図)。先日紹介したヘテロヨヒンビンもその一つです。

一見してわかる通り、これら複雑骨格化合物を実験室で合成することは、現在の有機合成化学の技術をもってしても簡単ではありません。そのため、植物から抽出した中間体を用いた半合成による供給方法なども工業的には採用されています。しかし、植物は成長するのが遅い&場所をとるため、大量・安価・迅速な供給には問題があります。そのため、代替法の開発が求められているのが現状です。

GPP synthase

今回紹介する論文では 21 個の遺伝子の導入と 3 個の遺伝子の破壊により MIA の共通中間体である Strictosidine を 0.5 mg/l の収量で作り出すことに成功しています。培地と構築した酵母のみで Strictosidine がこれだけの量取れるというのは学術的にも工業的にも素晴らしい成果です。ちなみに Strictosidine の前駆体である secologanin は 10 mg で約 1 万円です。

また、以前紹介した酵母でのオピオイド化合物生産系では、培地に基質である砂糖を添加しなければいけませんでした。今回紹介する論文は、”De novo” とタイトルが付いていることからも分かる通り、基質の添加の必要がありません!!

de_novo_alkaloid_2

(図は論文より)

 

“21 個の遺伝子導入”と書くと簡単なように聞こえますが、論文を読むとそこにたどり着くまでにたくさんの壁があったことが分かります。
酵母では、メバロン酸経路によってGPP が合成され、MIA のテルペン部分はその GPP を基質として合成されます。つまり Strictosidine の収量を上げるためには GPP の収量を上げることが必須です!そこで著者らは (i)フィードバック阻害を受けない HMG還元酵素の遺伝子 tHMGR を導入、(ii) IPP の異性化酵素をコードしている遺伝子 IDI1 を導入 (iii) tRNA の合成を抑制する遺伝子 MAF1 を導入しました(IPP は GPP と tRNA の両方の合成に使われてしまうため、tRNA 合成を抑制しないと GPP の収量が上がらない)。また、遺伝子発現を安定させるために、導入する遺伝子はすべて相同組み替えにより酵母のゲノムへと入れられています。

しかし、思ったように GPP の収量は上がりませんでした。

そこで、注意深く酵母の経路を見直してみると FPP 合成酵素が関係しているのではないかとの考えに行き着きました。FPP 合成酵素は、C10 の GPP も合成しますが、 C15 のFPP の方を優先的に合成します。そこで、FPP 合成酵素をコードしている ERG20 を破壊し、代わりにアメリカオオモミ由来の AgGPPS とセキショウヤケイ由来の mFPS144 を導入しました。すると GPP の収量の増加が見られました。

Geraniol 8-Hydroxylase (G8H)

植物内で GPP は 9 ステップの反応により secologanin へと変換されます。この反応のうちのいくつかは酸化酵素 P450 に触媒されており、酸化還元サイクルを効率良く回すためには還元酵素が必要です。そこで著者らは CYB5 と CPR も導入することにしました。

しかし、必要遺伝子をすべて導入した酵母の代謝物を調べてみると strictosidine はおろか secologanin さえも合成されていませんでした。そこで、一つずつ中間体を培地に添加して strictosidine が生産されるかを調べました。(地道な実験!)

すると 8 –hydroxygeraniol を添加した際にはsecologanin が生産されているのに、geraniol を添加した際には生産されませんでした。つまり、geraniol を基質とする酵素 G8H が機能していないことがわかりました。G8H を持つプラスミドを導入して実験すると酵母が strictosidine を生産していることがわかりました。

まとめ

以上紹介した本論文のごく一部であり、上記以外の細かいことも論文中には書かれており、非常に地道な検討の繰り返しによりすばらしい成果が出るということを改めて実感しました。
MIA では、Strictosidine 以降の酵素・遺伝子は未だに未解明なものが多く、アルカロイドの生合成研究はまだまだ謎がいっぱいです。しかし、今回の論文で構築した酵母を応用することにより、生合成候補遺伝子のアッセイが楽になったり、将来的なアルカロイドの大量生産につながったりすることが期待できます。このような手法が確立され、医薬品が世界中に行き届くようになることを願ってます。

The following two tabs change content below.
ゼロ

ゼロ

女の子。研究所勤務。趣味は読書とハイキング ♪ ハンドルネームは村上龍の「愛と幻想のファシズム」の登場人物にちなんでま〜す。5 分後の世界、ヒュウガ・ウイルスも好き!

関連記事

  1. クロスカップリング反応ーChemical Times特集より
  2. 祝5周年!-Nature Chemistryの5年間-
  3. JSRとはどんな会社?-1
  4. 未来切り拓くゼロ次元物質量子ドット
  5. 2016年JACS Most Read Articles Top…
  6. Nature Chemistry誌のインパクトファクターが公開!…
  7. ケムステが化学コミュニケーション賞2012を受賞しました
  8. えれめんトランプをやってみた

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ドウド・ベックウィズ環拡大反応 Dowd-Beckwith Ring Expansion
  2. ノーベル賞の合理的予測はなぜ難しくなったのか?
  3. 論文執筆で気をつけたいこと20(1)
  4. オッペナウアー酸化 Oppenauer Oxidation
  5. 1,2,3,4-シクロブタンテトラカルボン酸二無水物:1,2,3,4-Cyclobutanetetracarboxylic Dianhydride
  6. カティヴァ 酢酸合成プロセス Cativa Process for Acetic Acid Synthesis
  7. デイヴィッド・リウ David R. Liu
  8. ふるい”で気体分離…京大チーム
  9. ドライアイスに御用心
  10. キラルオキサゾリジノン

関連商品

注目情報

注目情報

最新記事

役に立たない「アートとしての科学」

科学の研究には、真理の探究という側面と、役立つ発明という側面があります。この二面性を表す言葉…

表現型スクリーニング Phenotypic Screening

表現型スクリーニング(Phenotypic Screening)とは、特定の生物現象に影響を与える化…

NMR解析ソフト。まとめてみた。①

合成に関連する研究分野の方々にとって、NMR測定とはもはやルーティーンワークでしょう。反応を仕掛けて…

エリック・アレクサニアン Eric J. Alexanian

エリック・J・アレクサニアン(Eric J. Alexanian、19xx年x月x日-)は、アメリカ…

光C-Hザンチル化を起点とするLate-Stage変換法

2016年、ノースカロライナ大学チャペルヒル校・Eric J. Alexanianらは、青色光照射下…

硤合 憲三 Kenso Soai

硤合 憲三 (そあい けんそう、1950年x月x日-)は、日本の有機化学者である。東京理科大学 名誉…

Chem-Station Twitter

PAGE TOP