[スポンサーリンク]

化学者のつぶやき

水から電子を取り出す実力派触媒の登場!

[スポンサーリンク]

人工光合成とは

植物は太陽光を利用して、水や二酸化炭素から有機物を創り出す光合成を行っています。石炭や石油も、石炭や石油も昔の植物やプランクトンの化石であることを考えると、我々人類は、植物がずっと昔から光合成により蓄えた貯金を食いつぶして生活できているといえます。「人工光合成」と呼ばれる研究分野では、人類が自ら光エネルギーを化学エネルギーとして蓄え、借金を食い止めたり、将来に貯金したりすることを目指しています。

人工光合成においては、植物の光合成と同様に3つのプロセスがあります。(1)光エネルギーをうまく取り込んで変換し、(2)電子を水から奪い、(3)水やCO2に供給することです。それぞれに困難な課題がありますが、中でも水から電子を奪って酸素を出す反応は非常に困難で、反応も遅いことが知られています。

2H2O → 4H+ + 4e + O2

酸素発生の半反応式は上記の通りですが、この式からわかるように、二つの水分子から4つの電子を引き抜いて2つの酸素原子、もしくはそれに近い状態の酸素原子をくっつけるという反応が必要になります。さらに途中段階で過酸化水素(H2O2)が遊離しやすいために全体の反応を素早く行わなければならないこと、この過酸化水素や他の活性中間体の反応性が高く触媒そのものを分解してしまう可能性があることなど、クリアしなければならない課題がたくさんあります。さらに、ルテニウムなどではなく、植物が使っているマンガンのような安価で豊富な金属を触媒中心に用いることができれば実用化の面でも期待できます。

最近、酸素発生触媒として画期的な材料が分子科学研究所の正岡准教授らの研究グループから報告されました。

“A pentanuclear iron catalyst designed for water oxidation”

Okamura, M.; Kondo, M.; Kuga, R.; Kurashige, Y.; Yanai, T.; Hayami, S.; Praneeth, V. K. K.; Yoshida, M.; Yoneda, K.; Kawata, S.; Masaoka, S.;Nature 2016, 530, 465. DOI: 10.1038/nature16529

正岡グループが酸素発生触媒として選んだのはマンガンよりもさらに安価で豊富な鉄触媒です。そして4電子の授受をスムーズに行うため、なんと5個の鉄イオンが並んだ、鉄5核錯体に着目しました。

鉄触媒が酸素発生触媒となる

この鉄錯体を触媒として用いたところ、1秒間に1900回も反応するというとんでもないターンオーバー頻度(TOF)が達成されるということを見出しました。これは、他の鉄錯体の最高記録の1000倍以上、レドックス安定性の高いコバルト触媒の記録を凌駕し、ルテニウム触媒の世界最高記録と遜色ない素晴らしい値です。人工系では、ルテニウムやコバルト、マンガンなどの錯体触媒や白金ナノ粒子などがよく使われますが、今回の正岡グループの成果は、生物の天然光合成系と遜色ない触媒系を、人工系で、それも鉄系で達成することができることを示しており、興味深い成果であると言えます。

2016-03-29_12-48-19

専門家同士のコラボレーション

この研究は正岡・近藤グループの電気化学・分光電気化学テクニックの上に米田・川田先生らの分子合成技術、倉重・柳井グループの分子軌道計算、速水教授のメスバウアー分光による鉄の価数決定などの技術を結集して、途中状態を厳密に決定することで、確度の高い触媒機構を提案しています。

それがはっきりとわかるのが59ページにも及ぶSupporting Informationです。先に述べたとおり、酸素発生触媒は4電子と2つの水分子を受け取り、酸素原子を取り出し、酸素原子間に結合を作ってから話してまた元の触媒に戻るというとっても複雑な機構が必要となります。

そのため通常では、中間状態の検出や予想はしても、実際の状態を正確にとらえることはなかなか出来ません。中間状態を検出するだけでも大変なものを、4電子反応の各ステップについて詳細に実験を行い、S1およびS2という二つの中間体の単離にも成功しています。

その結果、S2という中間体が【2つの鉄が3価の高スピン状態、1つが2価の高スピン、残り2つが2価の体スピン】であることを決定しています。これが計算結果とも良い一致を示していることは、この論文の説得力を大きく増しているといえます。4電子酸化が起こった後で水分子が入っていくようですが、鉄錯体の構造がゆがみながら水分子が入り込んでいく姿なども計算され、動画も公開されています。

というわけで、今回は、Natureの記事から論文を紹介させて頂きました。

この触媒は、人工光合成の中で、酸素発生という難しい役どころをこなす名俳優の誕生、といったところでしょうか。記事のクオリティの高さがわかる良い論文と思いました。今後の発展を期待いたします!

外部リンク

関連書籍

関連記事

  1. 科学カレンダー:学会情報に関するお役立ちサイト
  2. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  3. 連続アズレン含有グラフェンナノリボンの精密合成
  4. 【大阪開催2月26日】 「化学系学生のための企業研究セミナー」
  5. 電子不足トリプトファン誘導体を合成する人工酵素
  6. 研究者×Sigma-Aldrichコラボ試薬 のポータルサイト
  7. iPhone/iPodTouchで使える化学アプリケーション 【…
  8. 単純なアリルアミンから複雑なアリルアミンをつくる

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【東日本大震災より10年】有機合成系研究室における地震対策
  2. ピリジン-ホウ素ラジカルの合成的応用
  3. ヘイオース・パリッシュ・エダー・ザウアー・ウィーチャート反応 Hajos-Parrish-Eder-Sauer-Wiechert Reaction
  4. マクファディン・スティーヴンス反応 McFadyen-Stevens Reaction
  5. Carl Boschの人生 その3
  6. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応
  7. Bayer Material Scienceの分離独立が語るもの
  8. 常温常圧でのアンモニア合成の実現
  9. 電子実験ノートSignals Notebookを紹介します③
  10. 米のヒ素を除きつつ最大限に栄養を維持する炊き方が解明

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年3月
« 2月   4月 »
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

強酸を用いた従来法を塗り替える!アルケンのヒドロアルコキシ化反応の開発

第 382回のスポットライトリサーチは、金沢大学大学院 医薬保健総合研究科 創薬科学…

ドラえもん探究ワールド 身近にいっぱい!おどろきの化学

概要「化学」への興味の芽を育むマンガ+解説書 子ども(大人も)の毎日は、「化学」とのお付き合…

データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3ステップ

開催日:2022/05/25 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

薬剤師国家試験にチャレンジ!【有機化学編その1】

2022.5.21 追記: 問3の構造式を再度訂正しました。2022.5.2…

化学知識の源、化学同人と東京化学同人

化学の専門家なら化学同人と東京化学同人の教科書や参考書を必ず一冊は購入したことがあると思います。この…

天才プログラマー タンメイが教えるJulia超入門

概要使いやすさと実行速度を兼ね備えた注目のプログラミング言語Julia.世界の天才プ…

【Spiber】新卒・中途採用情報

【会社が求める人物像】私たちの理念や取り組みに共感し、「人を大切にする」とい…

飲むノミ・マダニ除虫薬のはなし

Tshozoです。先日TVを眺めていて「かわいいワンちゃんの体をダニとノミから守るためにお薬を飲ませ…

MEDCHEM NEWS 31-2号「2020年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

有機合成化学協会誌2022年5月号:特集号 金属錯体が拓く有機合成

有機合成化学協会が発行する有機合成化学協会誌、2022年5月号がオンライン公開されました。連…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP