[スポンサーリンク]

化学者のつぶやき

水から電子を取り出す実力派触媒の登場!

[スポンサーリンク]

人工光合成とは

植物は太陽光を利用して、水や二酸化炭素から有機物を創り出す光合成を行っています。石炭や石油も、石炭や石油も昔の植物やプランクトンの化石であることを考えると、我々人類は、植物がずっと昔から光合成により蓄えた貯金を食いつぶして生活できているといえます。「人工光合成」と呼ばれる研究分野では、人類が自ら光エネルギーを化学エネルギーとして蓄え、借金を食い止めたり、将来に貯金したりすることを目指しています。

人工光合成においては、植物の光合成と同様に3つのプロセスがあります。(1)光エネルギーをうまく取り込んで変換し、(2)電子を水から奪い、(3)水やCO2に供給することです。それぞれに困難な課題がありますが、中でも水から電子を奪って酸素を出す反応は非常に困難で、反応も遅いことが知られています。

2H2O → 4H+ + 4e + O2

酸素発生の半反応式は上記の通りですが、この式からわかるように、二つの水分子から4つの電子を引き抜いて2つの酸素原子、もしくはそれに近い状態の酸素原子をくっつけるという反応が必要になります。さらに途中段階で過酸化水素(H2O2)が遊離しやすいために全体の反応を素早く行わなければならないこと、この過酸化水素や他の活性中間体の反応性が高く触媒そのものを分解してしまう可能性があることなど、クリアしなければならない課題がたくさんあります。さらに、ルテニウムなどではなく、植物が使っているマンガンのような安価で豊富な金属を触媒中心に用いることができれば実用化の面でも期待できます。

最近、酸素発生触媒として画期的な材料が分子科学研究所の正岡准教授らの研究グループから報告されました。

“A pentanuclear iron catalyst designed for water oxidation”

Okamura, M.; Kondo, M.; Kuga, R.; Kurashige, Y.; Yanai, T.; Hayami, S.; Praneeth, V. K. K.; Yoshida, M.; Yoneda, K.; Kawata, S.; Masaoka, S.;Nature 2016, 530, 465. DOI: 10.1038/nature16529

正岡グループが酸素発生触媒として選んだのはマンガンよりもさらに安価で豊富な鉄触媒です。そして4電子の授受をスムーズに行うため、なんと5個の鉄イオンが並んだ、鉄5核錯体に着目しました。

鉄触媒が酸素発生触媒となる

この鉄錯体を触媒として用いたところ、1秒間に1900回も反応するというとんでもないターンオーバー頻度(TOF)が達成されるということを見出しました。これは、他の鉄錯体の最高記録の1000倍以上、レドックス安定性の高いコバルト触媒の記録を凌駕し、ルテニウム触媒の世界最高記録と遜色ない素晴らしい値です。人工系では、ルテニウムやコバルト、マンガンなどの錯体触媒や白金ナノ粒子などがよく使われますが、今回の正岡グループの成果は、生物の天然光合成系と遜色ない触媒系を、人工系で、それも鉄系で達成することができることを示しており、興味深い成果であると言えます。

2016-03-29_12-48-19

専門家同士のコラボレーション

この研究は正岡・近藤グループの電気化学・分光電気化学テクニックの上に米田・川田先生らの分子合成技術、倉重・柳井グループの分子軌道計算、速水教授のメスバウアー分光による鉄の価数決定などの技術を結集して、途中状態を厳密に決定することで、確度の高い触媒機構を提案しています。

それがはっきりとわかるのが59ページにも及ぶSupporting Informationです。先に述べたとおり、酸素発生触媒は4電子と2つの水分子を受け取り、酸素原子を取り出し、酸素原子間に結合を作ってから話してまた元の触媒に戻るというとっても複雑な機構が必要となります。

そのため通常では、中間状態の検出や予想はしても、実際の状態を正確にとらえることはなかなか出来ません。中間状態を検出するだけでも大変なものを、4電子反応の各ステップについて詳細に実験を行い、S1およびS2という二つの中間体の単離にも成功しています。

その結果、S2という中間体が【2つの鉄が3価の高スピン状態、1つが2価の高スピン、残り2つが2価の体スピン】であることを決定しています。これが計算結果とも良い一致を示していることは、この論文の説得力を大きく増しているといえます。4電子酸化が起こった後で水分子が入っていくようですが、鉄錯体の構造がゆがみながら水分子が入り込んでいく姿なども計算され、動画も公開されています。

というわけで、今回は、Natureの記事から論文を紹介させて頂きました。

この触媒は、人工光合成の中で、酸素発生という難しい役どころをこなす名俳優の誕生、といったところでしょうか。記事のクオリティの高さがわかる良い論文と思いました。今後の発展を期待いたします!

外部リンク

関連書籍

[amazonjs asin=”4759813624″ locale=”JP” title=”人工光合成と有機系太陽電池 (CSJ Current Review)”][amazonjs asin=”4759813756″ locale=”JP” title=”次世代のバイオ水素エネルギー (CSJカレントレビュー)”]

関連記事

  1. 階段状分子の作り方
  2. 仙台の高校生だって負けてません!
  3. 【誤解してない?】4s軌道はいつも3d軌道より低いわけではない
  4. 低分子化合物の新しい合成法 コンビナトリアル生合成 生合成遺伝子…
  5. 有機反応を俯瞰する ー芳香族求電子置換反応 その 1
  6. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~…
  7. ボロン酸エステル/ヒドラゾンの協働が実現する強固な細胞Click…
  8. アカデミアからバイオベンチャーへ 40代の挑戦を成功させた「ビジ…

注目情報

ピックアップ記事

  1. カルベン触媒によるα-ハロ-α,β-不飽和アルデヒドのエステル化反応
  2. 化学研究で役に立つデータ解析入門:回帰分析の応用編
  3. 第9回 野依フォーラム若手育成塾
  4. 特許にまつわる初歩的なあれこれ その2
  5. 黒田 玲子 Reiko Kuroda
  6. ヘテロ原子を組み込んだ歪シクロアルキン簡便合成法の開発
  7. 高効率・高正確な人工核酸ポリメラーゼの開発
  8. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば
  9. 音声入力でケムステ記事を書いてみた
  10. HTML vs PDF ~化学者と電子書籍(ジャーナル)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

電子一つで結合!炭素の新たな結合を実現

第627回のスポットライトリサーチは、北海道大有機化学第一研究室(鈴木孝紀教授、石垣侑祐准教授)で行…

柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート

50代での転職に不安を感じる方も多いかもしれません。しかし、長年にわたり築き上げてきた専門性は大きな…

SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 2024…

「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

bergです。この度は2024年8月30日(金)~31日(土)に電気通信大学とオンラインにて開催され…

【書籍】Pythonで動かして始める量子化学計算

概要PythonとPsi4を用いて量子化学計算の基本を学べる,初学者向けの入門書。(引用:コ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP