[スポンサーリンク]

odos 有機反応データベース

相間移動触媒 Phase-Transfer Catalyst (PTC)

[スポンサーリンク]

 

概要

SN2置換反応などにおいては、通常強塩基にて脱プロトン化を行い、アニオンを生成させたところに求電子剤との反応が行われる。いかし収率向上や溶解性などの問題から、DMFやDMSOなどの非プロトン性極性溶媒の使用が多く求められる。これらは高沸点ゆえに除去が難しく、また比較的高価なため大量合成時には不向きとなる。

水-非極性有機溶媒の2相系でイオン性の反応を行う目的で、相間移動触媒(Phase-Transfer Catalyst, PTC)が用いられる。これは2つの相を行き来できる両親媒性触媒のことであり、多くは長鎖アルキル鎖をもつ四級アンモニウム塩やクラウンエーテルがPTCとして働く。

安価で後処理容易な無機塩基の使用、有機溶媒の使用量低減、回収性の悪いDMFやDMSOなどの使用回避、実験操作の易化、反応性の向上、副反応の抑制などが期待でき、とくに大量スケール合成時に多くの利点をもたらす。グリーンケミストリーの観点からも注目されている触媒系である。

基本文献

  • Makosza, M.; Serafinowa, B. Rocz. Chem. 1965, 39, 1223.
  • Starks, C. M. J. Am. Chem. Soc. 1971, 93, 195. DOI: 10.1021/ja00730a033
  • Dolling, U.-H.; Davis P; Grabowski, E. J. J. Am. Chem. Soc. 1984, 106, 446. DOI: 10.1021/ja00314a045
  • Makosza, M. Pure Appl. Chem. 2000, 72, 1399. doi:10.1351/pac200072071399
  • O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506. DOI: 10.1021/ar0300625
  • Hashimoto, T.; Maruoka, K. Chem. Rev. 2007, 107, 5656. doi:10.1021/cr068368n
  • Ooi, T.; Maruoka, K. Aldrichimica Acta 2007, 40, 77. [PDF]

 

反応機構

無機塩基及び四級アンモニウム塩を相間移動触媒として用いる系では、大別して2通りの説が提唱されており、現在でも論争の的になっている。

 

ひとつはStarksらによって提唱されたExtraction MechanismJ. Am. Chem. Soc. 1971, 93, 195.)である。この説はPTC(Q+Xと表記)が有機相と水相を自由に行き来できるという仮説に依拠している。無機塩基(MOH)が水相でイオン交換を起こし、Q+OHの形になったものが有機相に抽出され、この分極度=塩基性の高い化学種が、有機物の脱プロトン化を行うという駆動原理を想定している。生成したアニオン種Q+Rは分極したイオン対となっており、求核置換反応などにより活性の高い化学種となっている。このような理屈にて反応性の向上が説明される。

PTC_3.gif他方はMakoszaらによって提唱されたInterfacial MechanismRocz. Chem. 1965, 39, 1223.)である。これは脱プロトン化によるアニオン種の生成が、有機相と水相の界面にて起きるという仮説に基づいている。この過程にはPTCは関与せず、抽出過程にだけ関与するというものである。とりわけ不斉相間移動触媒の場合はこの仮説に則っているのではと考えられている。脂溶性の高い置換基を豊富にもつものが多いため、水相へと自由移動できることが考えにくいからである。

PTC_4.gif

反応例

典型的な加速効果の例

PTC_2.gif

丸岡触媒を用いるGlycine Schiff Baseの不斉アルキル化[1]

PTC_1.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Kitamura, M.; Shirakawa, S.; Maruoka, K. Angew. Chem. Int. Ed. 2005, 44, 1549. doi:10.1002/anie.200462257

 

関連書籍

 

外部リンク

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 熊田・玉尾・コリューカップリング Kumada-Tamao-Co…
  2. アラン・ロビンソン フラボン合成 Allan-Robinson …
  3. クラベ アレン合成 Crabbe Allene Synthesi…
  4. パッセリーニ反応 Passerini Reaction
  5. エーテル系保護基 Ether Protective Group
  6. スワーン酸化 Swern Oxidation
  7. ブヘラ・ベルクス反応 Bucherer-Bergs reacti…
  8. マーシャル プロパルギル化 Marshall Propargyl…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ロイ・ペリアナ Roy A. Periana
  2. 無機材料ーChemical Times 特集より
  3. 【1月開催】第五回 マツモトファインケミカル技術セミナー 有機チタン、ジルコニウムが使用されている世界は? -触媒のまとめと他反応への期待-
  4. Biotage Selekt のバリュープライス版 Enkel を試してみた
  5. ケムステニュース 化学企業のグローバル・トップ50が発表【2020年版】
  6. 根岸 英一 Eiichi Negishi
  7. 2014年ノーベル化学賞・物理学賞解説講演会
  8. 分子があつまる力を利用したオリゴマーのプログラム合成法
  9. 理論的手法を用いた結晶内における三重項エネルギーの流れの観測
  10. 積極的に英語の発音を取り入れてみませんか?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年7月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP