[スポンサーリンク]

化学者のつぶやき

(-)-ウシクライドAの全合成と構造決定

“Exploiting Orthogonally Reactive Functionality: Synthesis and Stereochemical Assignment of (-)-Ushikulide A”
Trost, B. M.; O’Boyle, B. M. J. Am. Chem. Soc. 2008, 130, 16190. doi:10.1021/ja807127s

スタンフォード大学・Trostらによる報告です。今回取り上げる化合物・ウシクライドA(Ushikulide A)ですが、彼らのグループが合成に着手した時点では、立体化学が全く決まっていませんでした。

そこでひとまず彼らは、立体化学決定済みの類似構造天然物Cytovaricinの構造を参考に、下記構造だと推定して全合成に取りかかっています。

 

ushikulideA_2.gifこのようなケースでは、合成したはいいが天然物と合成品の立体化学が違う、ということが当然ながら起こりえます。多くの場合、とにかく完成させて分析結果を比較しないとダメで、最後の最後まで違いが分かりません。こういう高いリスクを織り込み済みで研究を進めなくてはならない・・・というのが頭の痛いところです。

このような場合、すなわち全合成で天然物の三次元立体構造を確定しようとする場合には、“全ての不斉点を状況に応じて変更できる方法論”を用いつつも、それを各フラグメント毎に実行可能な“収束性の高い合成ルートの設定”、という研究戦略が必要不可欠となります。

上記目的に合致する方法論は、現代ではすなわち(触媒的)不斉合成法をベースとしたものになります。下記に逆合成ルートと鍵反応の概要を示しておきますが、実際、ほとんどの不斉点がreagent/catalyst controlの手法を用いて構築されていることがわかります(詳細は論文をご覧ください)。

ushikulideA_3.gif

 不斉点を制御するための、古今東西あらゆる技術が盛り込まれている全合成といえます。3ページのコミュニケーションですが、読み応えは満点です。論文紹介セミナーなどに適した論文ではないでしょうか。

 ラボが独自に開発した反応を、全合成へ応用して有用性をデモンストレーションするという研究例は多くあります。しかしながら、反応にあわせた基質デザインを必要とし、冗長で非効率的なルートになってしまうという、本末転倒な結果にもなりがちです。鍵反応の持つ制約ゆえに、適用可能な化合物の大きさに限界がある、というのが多くの方法論が持つハードルだといえます。

Trostグループは、常時、独自に開発した反応・方法論を用いて全合成を行っています。にも関わらず、彼らのグループからは、今回のようにかなりの巨大ターゲットが報告されることも少なくありません。彼らが開発する方法論には、“収率・化学選択性・汎用性が高い”という以上のファクターがあるように思えます。つまり反応の結合生成様式そのものが、有機合成の本質を突いているのでしょう。それゆえ無駄の出ないルート設定、ひいては巨大複雑天然物の合成を可能としているのだと思われます。流石に“アトムエコノミー”を謳うだけのことはあるな、と感じます。

 

ちなみに、Trost教授以外の共著者はただ一名。つまりこれだけの仕事をたった一人が現実的にやってのけていることになりますが・・・ちょっと信じられない話に思えます。

(追記) 先日Trost教授のこの話を盛り込んだお話を3時間たっぷり聞かせていただきました。長時間の講演にも関わらず非常にアクティブで面白い講演。齢70に近いにもかかわらず、いまだ第一線を走っている化学者の一人ですね。若手も負けずにがんばらなければなりません(ブレビ)。

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 第28回光学活性化合物シンポジウム
  2. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらし…
  3. 新たなクリックケミストリーを拓く”SuFEx反応&#…
  4. 捏造のロジック 文部科学省研究公正局・二神冴希
  5. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  6. 炭素繊維は鉄とアルミに勝るか? 2
  7. メソリティック開裂を経由するカルボカチオンの触媒的生成法
  8. アルキン来ぬと目にはさやかに見えねども

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 立春の卵
  2. クレイグ・ホーカー Craig J. Hawker
  3. 緑茶成分テアニンに抗ストレス作用、太陽化学、名大が確認
  4. ルボトム酸化 Rubottom Oxidation
  5. バートン脱アミノ化 Barton Deamination
  6. 信じられない!驚愕の天然物たちー顛末編ー
  7. カーボンナノチューブをふりかえる〜Nano Hypeの狭間で
  8. クリストフ・マチャゼウスキー Krzysztof Matyjaszewski
  9. 「超分子ポリマーを精密につくる」ヴュルツブルク大学・Würthner研より
  10. デルフチバクチン (delftibactin)

関連商品

注目情報

注目情報

最新記事

博士課程に進学したあなたへ

どういった心構えで研究生活を送るべきかについて、昨年ですが面白い記事がNatureに出ていたので、紹…

【書籍】フロンティア軌道論で理解する有機化学

「軌道の見方がわかる!有機反応を一貫して軌道論に基づいて解説。新しい有機化学を切り拓く読者へ…

少量の塩基だけでアルコールとアルキンをつなぐ

カリウムtert-ブトキシドを触媒とするα-アルキルケトン合成法が報告された。遷移金属を用いず、高い…

日本薬学会第139年会 付設展示会ケムステキャンペーン

日本化学会年会では毎年恒例の付設展示会ケムステキャンペーンを行いました。さて、本日から日本薬…

論文・学会発表に役立つ! 研究者のためのIllustrator素材集: 素材アレンジで描画とデザインをマスターしよう!

概要Adobe Illustratorを用いたイラスト作成の入門書。すぐに使えるイラスト素材…

シアノヒドリンをカルボン酸アミドで触媒的に水和する

第190回目のスポットライトリサーチは、神田 智哉(かんだ ともや)さんにお願いしました。神…

Chem-Station Twitter

PAGE TOP