[スポンサーリンク]

一般的な話題

ドラッグデザインにおいてのメトキシ基

[スポンサーリンク]

 

メトキシ基 (Methoxy group, -OMe/-OCH3) は最も単純なエーテル系官能基で、医薬品や生理活性物質に頻出の構造です。適度な分子量、合成の容易さなど一見しただけでも創薬化学上の利点は思い浮かびますが、意外な特性を持つ曲者でもあります。本記事ではドラッグデザインにおけるメトキシ基の役割について、簡単に列挙します。

メトキシ基の電子効果

sp3炭素に結合した場合、メトキシ基は酸素原子の強い電気陰性度のために電子求引性誘起効果を示します。では芳香族化合物などのsp2炭素においてはどうかというと、電子供与性共鳴効果電子求引性誘起効果の2通りを示します。メトキシ基の酸素原子上には2対の非共有電子対が存在し、芳香環などと共鳴することができます。一般的に電子効果の強さは 共鳴効果 > 誘起効果 であるため、sp2炭素と共鳴可能な場合、メトキシ基は電子供与性置換基を示します。ただし、電子効果を考えるべき部位のメタ位にメトキシ基が置換した場合、共鳴効果が及ばない位置のためメトキシ基の電子効果は誘起効果のみとなります。この場合はsp3炭素に結合した場合と同様に電子求引性誘起効果を示します。この傾向は Hammett 則からも如実に見て取ることができます (下表2. OCH3 を参照。プラスの値は電子求引、マイナスの場合は電子供与に相当する)。なお、オルト置換の場合の電子効果は基本的にパラ位と同じですが、隣接位であるためにさまざまな影響が発生することがあり Hammett 則では表すことができません (これはメトキシ基に限ったことではありません)。

Chem.Rev. 1991, 91, 165より引用)

 

対象部位のパラ位に存在するメトキシ基は、比較的強力な電子供与性基であり、物性も悪くなく合成 (もしくはビルディングブロックの購入) も容易なため、構造活性相関展開をする場合の Topliss Tree においても優先順位の高い置換基となっています。

メトキシ基の疎水性

ドラッグデザインの上で重要なファクターの一つに疎水性 (脂溶性) があります。疎水効果などの結合定数に与える影響のほか、膜透過性・溶解性のような薬物動態学的な面でも疎水性パラメータには頭を悩ませられます。そこで面白いのがメトキシ基です。脂肪族メトキシ基は脂溶性の指標である LogP の値を 1 程度減少させ、アリールメトキシ基は logP にほとんど影響を与えない、という経験則が示されています (Hanschのπ、コチラの資料の7ページ目をご参照ください)。ドラッグライクな低分子化合物の指標として Lipinski の “Rule of Five” があり、ドラッグデザインにおいては無闇に脂溶性を上げないことが求められます。物性を大きく変えずに何か置換基を入れてその影響を比較したい場合、メトキシ基がファーストチョイスとして利用できると考えられます。

ただし、複素環など隣接位に相互作用可能な原子や置換基がある場合にはまたまた特殊な物性を示す場合があり、注意が必要です。
参考: メトキシ基がエチル基とほぼ同じになるとき (気ままに創薬化学 様)

メトキシ基の代謝

メトキシ基はシトクロムP450 (CYP) による第 I 相の代謝部位になりやすく、ドラッグデザインの際は代謝安定性を考える上での重要な構造でもあります。最も一般的な代謝反応は、脱メチル化によるヒドロキシ基への代謝です (図1)。基本的に代謝反応は水溶性を上げる方向に働くのですが、アリールメトキシ基が代謝されて生じるフェノール性ヒドロキシ基はキノン様のマイケルアクセプターに変換されたり、フリーラジカルを生じたりなどの有害な反応を示すこともあり、生体内ではちょっと注意が必要な置換基です。

図1 アニソールからフェノールへの代謝

そんな代謝を受けやすいメトキシ基の水素原子を重水素に置換し、代謝安定性を向上させた医薬品が上市されています。デューテトラベナジン (deutetrabenazine, Austedo®図2右) というハンチントン病治療薬がそれです。もともとテトラベナジン (図2左) という軽原子のみで構成された医薬品が治療に使われていたのですが、その二箇所のメトキシ基へ重水素が導入されたデューテトラベナジンはテトラベナジンより代謝安定性が向上したとされています。重水素化することで、代謝反応速度は軽水素化合物に比べ 〜1/10 程度まで遅くなるとされています (重水素効果)。デューテトラベナジンを含む重水素医薬品についての詳しい解説はコチラの記事をご覧ください。重メトキシ基、コストはかかりますがドラッグデザインの上では非常に興味深いです。脂溶性なんかはどうなってるんでしょうか?

図2 テトラベナジンとデューテトラベナジン

保護基としてのメトキシ基

合成上、メトキシ基はフェノール性ヒドロキシ基の保護基として使用される場合がありますが、一般的に脱保護反応の官能基許容性が低いため、医薬品の合成後期のような高度に官能基化された場合での脱保護は推奨されません。参考記事もご覧ください。
参考記事: O-脱メチル化・脱アルキル化剤 基礎編

おまけ: NMRで見やすいパラ置換アニソール

適当に分子をデザインして ChemDraw で1H-NMRスペクトルの予測を出してみました (図3)。パラ置換アニソールは 3.8 ppm 付近のシングレット (3H) と芳香環領域の特徴的な 2 本のダブレット (2H x2、分解能が高ければダブルダブレットで見えます) が特徴的で帰属しやすいです。なので適当なモデル分子を構築する場合、筆者はパラ置換アニソールを入れたり、単純にメトキシ基を入れたりすることが多いです。

図3 パラ置換アニソール部位の特徴的な NMR ピーク

参考図書

[amazonjs asin=”480520866X” locale=”JP” title=”定量的構造活性相関: Hansch法の基礎と応用”] [amazonjs asin=”4807908499″ locale=”JP” title=”ドラッグデザイン: 構造とリガンドに基づくアプローチ”] [amazonjs asin=”1118057481″ locale=”JP” title=”Greene’s Protective Groups in Organic Synthesis”]
Avatar photo

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. メーカーで反応性が違う?パラジウムカーボンの反応活性
  2. ヒバリマイシノンの全合成
  3. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて②~
  4. 分子があつまる力を利用したオリゴマーのプログラム合成法
  5. 副反応を起こしやすいアミノ酸を迅速かつクリーンに連結する
  6. 「新反応開発:結合活性化から原子挿入まで」を聴講してみた
  7. 有機反応を俯瞰する ーヘテロ環合成: C—X 結合で切る
  8. 5-ヒドロキシトリプトファン選択的な生体共役反応

注目情報

ピックアップ記事

  1. 金属-有機構造体 / Metal-Organic Frameworks
  2. 新しい量子化学 電子構造の理論入門
  3. 日本発元素がついに周期表に!!「原子番号113番」の命名権が理研に与えられる
  4. ケムステVシンポ「最先端有機化学」開催報告(前編)
  5. ジェームス・ツアー James M. Tour
  6. クリストファー・チャン Christopher J. Chang
  7. クラーク・スティル W. Clark Still
  8. 反応機構を書いてみよう!~電子の矢印講座・その1~
  9. 第45回ケムステVシンポ「超セラミックス ~分子性ユニットを含む新しい無機材料~」を開催します!
  10. ターボグリニャール試薬

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP