[スポンサーリンク]

化学者のつぶやき

高分子と低分子の間にある壁 1:分子量分布

Chem-Stationを閲覧されている方は「有機化学」の分野の方が多いように思います。
「有機化学」というと慣例的に有機”低分子”を扱う化学とされ、”高分子”を扱う「高分子化学」とは区別されています。

筆者は大学~社会人の数年間は「高分子化学」に携わっていたのですが、異動になり、今は「有機”低分子”化学」を主に扱っています。
両者を経験してみて、その間にある壁の存在を改めて感じましたので、一般的かどうかはわかりませんが、筆者の経験談として紹介したいと思います。


紹介が遅れましたが、スタッフとして新しく入りましたきのんと申します。
今後とも、よろしくお願いいたします。この記事が私の最初の記事になります。

 

2つの分子量 ~数平均Mnと重量平均Mwは何が違う?~

分子量分布は高分子化学の教科書の最初の方に出てきますが、これがまた低分子ばっかりさわってる人にとっては厄介な概念であるかもしれません。
低分子では十分に精製して単一分子として議論をすることが多いため、様々な分子量の分子が混ざっている高分子を直感的に理解することができないようです。

高分子化学では数平均分子量Mn重量平均分子量Mwという2種類の分子量があります。
(ほかにもいっぱいありますが、基本はこの2つです)
低分子のように単一分子であれば、MnとMwが一致し、分布を持つと必ずMn<Mwとなります。
よって、Mw/Mnの値が大きいほど分布が広く、小さいほど分布が狭い、1に近づくほど単一分子、ということになります。

では、なぜこの2つの分子量MnとMwを使い分けているかというと、ざっくり言ってしまえば、Mnは計算用、Mwは物性議論用です。

極端な例として、分子量1,000の分子と1,000,000の分子が同じ”数”だけ入っている高分子で考えます。

1g中に何molの分子があるか?と言われたら、

1000*(x/2)+1000000*(x/2) = 1ですから、
x = 1/500500(=1.998E-6)になります。

一方、数平均分子量は、それぞれの分子の(個数)存在比は1/2ですから
Mn = 1000*(1/2)+1000000*(1/2) = 500500
となり、1g中何molかという計算をMnを用いて計算しても同じ答えになることがわかります。

一方、1g中何gが分子量1000の分子か、と問われたら、

上記のxの値を利用して、
1000*(1/500500)/2 = 1000/1001000 = 0.000999gとなり、
同じ個数とはいえ、分子量1000の分子はほとんど入っていないことになります。
逆に分子量1000000の分子は0.999001g入っているということですね。
両分子の密度が同じだとすると、この分子の体積のほとんどが分子量1000000の分子で占められていることになります。
この高分子を使った膜の強度や耐熱性を測定する場合は、ほとんどを占めている分子量1000000の性質が色濃く反映されると考えるのが自然ですよね。
これを加味した分子量として重量平均分子量Mwが使われています。

この高分子の場合は
Mw = 1000*1000/1001000+1000000*1000000/1001000 = 999001
となり、Mnと比べてかなり1000000に近いことがわかります。

 

分子量設計 ~狙った分子量のポリマーをどうやって作る?~

高分子材料を評価する場合、必ずどこかで「分子量効果」を調査します。
そのときはMw = 5000, 20000, 50000というように、Mwで狙いをつけて合成します。
材料の物性と分子量の関係を見たいわけですからMwをふるというのは自然の感覚です。

ポリウレタンなどは仕込みモノマー比から理論的な分子量を簡単に計算できます。
反応の濃度や温度は基本的に関係ありません(もちろん例外はあります)。
ここで計算できる分子量はMnなのですが、分布(Mw/Mn)は同じ合成をしているとあまり変化しないので、一度経験があれば狙ったMwで合成することも容易です。

筆者が初めて合成する樹脂の場合、Mw/Mn=2と仮定して合成しています。

アクリル樹脂は、ウレタン樹脂ほど一筋縄ではいきません。
アクリルの溶液重合の場合は、モノマー、重合開始剤、溶剤を入れるわけですが、モノマー濃度、開始剤濃度、重合温度、そしてそれぞれの添加の仕方(何を最初にフラスコに入れて、何を滴下で入れるかなど)様々なファクターが分子量に影響してきます。
理論的に考えて分子量を設計することもできるはずですが、周囲の先輩方を見ている限りでは、一人ひとり、自分流の標準処方というのを持っていて、

まずそれで作ってみて、じゃぁこう変えたら分子量倍くらいになるかな?って感じで分子量をふっていきます。

まさに職人技です。
筆者は溶液重合(均一系)でしか重合したことありませんが、乳化重合のような不均一系だとさらに複雑で、これをずーっとやってる人なんかもいるのですごいなぁと感心します。

MnとMw、それぞれの意味を理解する多少の助けにはなったでしょうか。

もし、Mwにここまで明確な物理的な意味がなかったら、正規分布のように平均値と標準偏差で分布が表現されていたかもしれませんね。

分子量分布にもいろいろ高分子と低分子の壁はあるのですが、記事が長くなってしまったので、あらためて書くことに致します。

The following two tabs change content below.

きのん

化学メーカーの研究開発をしております。大学時代は光電変換、特に有機薄膜太 陽電池の研究に携わっていました。今は有機化学と高分子化学の間のような仕事 をしております。音楽好き

関連記事

  1. ホウ素から糖に手渡される宅配便
  2. 【ワイリー】日本プロセス化学会シンポジウム特典!
  3. 「科学者の科学離れ」ってなんだろう?
  4. ウーロン茶の中でも医薬品の化学合成が可能に
  5. アレーン類の直接的クロスカップリング
  6. 反応探索にDNAナノテクノロジーが挑む
  7. 立体規則性および配列を制御した新しい高分子合成法
  8. SciFinderマイスター決定!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウム
  2. 2013年ケムステ人気記事ランキング
  3. トリフルオロ酢酸パラジウム(II) : Palladium(II) Trifluoroacetate
  4. 沈 建仁 Jian-Ren Shen
  5. ベンザイン Benzyne
  6. フィッツナー・モファット酸化 Pfitzner-Moffatt Oxidation
  7. 投票!2014年ノーベル化学賞は誰の手に??
  8. 2013年就活体験記(2)
  9. ラウリマライドの全合成
  10. リック・ダンハイザー Rick L. Danheiser

関連商品

注目情報

注目情報

最新記事

有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発

第166回目のスポットライトリサーチは、慶應義塾大学理工学部博士課程・西 信哉(にし のぶや)さんに…

アルキルアミンをボロン酸エステルに変換する

不活性C(sp3)–N結合をボリル化する初めての反応が開発された。入手容易なアルキルアミンから様々な…

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

PAGE TOP