[スポンサーリンク]

化学者のつぶやき

ホウ素から糖に手渡される宅配便

 

非天然の人工に設計した化合物で、一見すると単純な構造をしていますが、興味深い用途が提案されています。このホウ素化合物をあなたならば何に使おうと考えますか?

 

1つめのヒントです。最も期待される応用先は医薬品ですが、これ単品では毒にも薬にもならず、とくに生理活性はありません。何かを助ける物質です。

 

2つめのヒントです。構造式を見てまず目につくのはホウ素原子でしょう。この分子のようなボロン酸のなかまは、複数のヒドロキシ基を隣接して持つ化合物と結合しやすく、とくにはボロン酸の重要な標的となります。単糖にはいくつか種類があるものの、立体障害がなければ、ボロン酸は、糖のヒドロキシ基とホウ酸エステル結合を交わそうとする傾向があります。

GREEN0354.PNG

ボロン酸の性質

3つめのヒントです。アミノ基を導入してある理由は便宜上のものであり、例えばクリックケミストリーでおなじみのアジド基など、別の官能基でも構いません。今回は、カルボジイミドを脱水縮合剤として、この分子でカルボキシル基を修飾するためにアミノ基を導入してあります。

GREEN0353.png

代表的なカルボジイミドのひとつ

EDC; 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 

このホウ素化合物には、薬物送達(drug delivery)の用途が提案されています[1]。

 

膜タンパク質など細胞表面にある物質を標的にするならばともかく、細胞内部にある物質を標的とした場合、薬剤が細胞膜を通過できなければ、ほとんど効果を発揮することはできません。細胞膜さえ突破できればたくさんの可能性が拓けるにもかかわらず、応用され社会に貢献しないままの物質は数多くあります。とくに、核酸製剤やタンパク質製剤などの高分子は、多様な生理作用を持つにも関わらず、薬物送達が鬼門中の鬼門になって実用をはばんでいます。

薬物送達システムには他の様式もたくさん開発が進められていますが、新参のホウ素化合物[1]の秘訣は細胞の表層にうじゃうじゃと分布する糖鎖にあります。

 

まず準備として、今回のホウ素化合物を、生理活性ペプチドなど細胞内部に運び入れたい分子(図中”Protein”)につなげます。アミノ基を入れてあるのはそのためで、生理活性を持ったタンパク質のカルボキシル基末端や、グルタミン酸アスパラギン酸といった酸性アミノ酸の側鎖にあるカルボキシル基に対して、脱水縮合でつなげていきます。これで用意が完了です。

GREEN0352.png

細胞表層の糖鎖が狙い目!

そして、このホウ素化合物で修飾したタンパク質を、生体に投与します。すると、細胞の表面に林立した糖鎖とホウ酸エステル結合を交わし、その後、修飾されたタンパク質ごとエンドサイトーシス食作用)で細胞内部に取り込まれます。哺乳類の培養細胞で実際に投与してみたところ、期待通り送達され、細胞の内部でタンパク質が機能し、細胞の状態が変化するさまが観察されたとのことです。

 

今後の展望としては、細胞のタイプで異なる糖鎖を認識して、がんなど特定の組織を狙い撃ちする薬物送達を可能にしたいとのこと。確かに、糖をキラルに認識するボロン酸が、以前から報告されています[2]。シンプルな構造だけに、これからどう改良していくか、まだまだたくさんの可能性を秘めているかもしれません。


 

参考論文

  1. 生体へ高分子の薬物送達を仲介するホウ素化合物 ”Boronate-Mediated Biologic Delivery” Gregory A. Ellis et al. J. Am. Chem. Soc. 2012 DOI: 10.1021/ja210719s
  2. 単糖をキラルに区別する蛍光分子センサーとして機能するホウ素化合物 “Chiral discrimination of monosaccharides using a fluorescent molecular sensor” Tony D. James et al. Nature 1994 DOI: 10.1038/374345a0

 

関連書籍

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. ムギネ酸は土から根に鉄分を運ぶ渡し舟
  2. 化学エネルギーを使って自律歩行するゲル
  3. sp3炭素のクロスカップリング反応の機構解明研究
  4. 日本国際賞受賞者 デビッド・アリス博士とのグループミーティング
  5. 前人未踏の超分子構造体を「数学のチカラ」で見つけ出す
  6. 植物の受精効率を高める糖鎖「アモール」の発見
  7. 祝5周年!-Nature Chemistryの5年間-
  8. Stephacidin Bの全合成と触媒的ヒドロアミノアルキル化…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. パール・クノール チオフェン合成 Paal-Knorr Thiophene Synthesis
  2. 抗がん剤大量生産に期待 山大農学部豊増助教授 有機化合物生成の遺伝子発見
  3. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線
  4. サイエンスアゴラ2014総括
  5. 武装抗体―化学者が貢献できるポイントとは?
  6. 第七回 生命を化学する-非ワトソン・クリックの世界を覗く! ー杉本直己教授
  7. 新課程視覚でとらえるフォトサイエンス化学図録
  8. 本多 健一 Kenichi Honda
  9. アメリカ化学留学 ”立志編 ー留学の種類ー”!
  10. ロッセン転位 Lossen Rearrangement

関連商品

注目情報

注目情報

最新記事

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

光触媒ラジカルカスケードが実現する網羅的天然物合成

四川大学のYong Qinらは、可視光レドックス触媒によって促進される窒素ラジカルカスケード反応によ…

有機反応を俯瞰する ー縮合反応

今回は、高校化学でも登場する有機反応であるエステル合成反応を中心に、その反応が起こるメカニズムを解説…

ご長寿化学者の記録を調べてみた

先日、G. Stork教授の論文に関するポストがありました。御年95歳という研究者でありながら、学術…

Chem-Station Twitter

PAGE TOP