[スポンサーリンク]

化学者のつぶやき

ホウ素から糖に手渡される宅配便

[スポンサーリンク]

 

非天然の人工に設計した化合物で、一見すると単純な構造をしていますが、興味深い用途が提案されています。このホウ素化合物をあなたならば何に使おうと考えますか?

 

1つめのヒントです。最も期待される応用先は医薬品ですが、これ単品では毒にも薬にもならず、とくに生理活性はありません。何かを助ける物質です。

 

2つめのヒントです。構造式を見てまず目につくのはホウ素原子でしょう。この分子のようなボロン酸のなかまは、複数のヒドロキシ基を隣接して持つ化合物と結合しやすく、とくにはボロン酸の重要な標的となります。単糖にはいくつか種類があるものの、立体障害がなければ、ボロン酸は、糖のヒドロキシ基とホウ酸エステル結合を交わそうとする傾向があります。

GREEN0354.PNG

ボロン酸の性質

3つめのヒントです。アミノ基を導入してある理由は便宜上のものであり、例えばクリックケミストリーでおなじみのアジド基など、別の官能基でも構いません。今回は、カルボジイミドを脱水縮合剤として、この分子でカルボキシル基を修飾するためにアミノ基を導入してあります。

GREEN0353.png

代表的なカルボジイミドのひとつ

EDC; 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 

このホウ素化合物には、薬物送達(drug delivery)の用途が提案されています[1]。

 

膜タンパク質など細胞表面にある物質を標的にするならばともかく、細胞内部にある物質を標的とした場合、薬剤が細胞膜を通過できなければ、ほとんど効果を発揮することはできません。細胞膜さえ突破できればたくさんの可能性が拓けるにもかかわらず、応用され社会に貢献しないままの物質は数多くあります。とくに、核酸製剤やタンパク質製剤などの高分子は、多様な生理作用を持つにも関わらず、薬物送達が鬼門中の鬼門になって実用をはばんでいます。

薬物送達システムには他の様式もたくさん開発が進められていますが、新参のホウ素化合物[1]の秘訣は細胞の表層にうじゃうじゃと分布する糖鎖にあります。

 

まず準備として、今回のホウ素化合物を、生理活性ペプチドなど細胞内部に運び入れたい分子(図中”Protein”)につなげます。アミノ基を入れてあるのはそのためで、生理活性を持ったタンパク質のカルボキシル基末端や、グルタミン酸アスパラギン酸といった酸性アミノ酸の側鎖にあるカルボキシル基に対して、脱水縮合でつなげていきます。これで用意が完了です。

GREEN0352.png

細胞表層の糖鎖が狙い目!

そして、このホウ素化合物で修飾したタンパク質を、生体に投与します。すると、細胞の表面に林立した糖鎖とホウ酸エステル結合を交わし、その後、修飾されたタンパク質ごとエンドサイトーシス食作用)で細胞内部に取り込まれます。哺乳類の培養細胞で実際に投与してみたところ、期待通り送達され、細胞の内部でタンパク質が機能し、細胞の状態が変化するさまが観察されたとのことです。

 

今後の展望としては、細胞のタイプで異なる糖鎖を認識して、がんなど特定の組織を狙い撃ちする薬物送達を可能にしたいとのこと。確かに、糖をキラルに認識するボロン酸が、以前から報告されています[2]。シンプルな構造だけに、これからどう改良していくか、まだまだたくさんの可能性を秘めているかもしれません。


 

参考論文

  1. 生体へ高分子の薬物送達を仲介するホウ素化合物 ”Boronate-Mediated Biologic Delivery” Gregory A. Ellis et al. J. Am. Chem. Soc. 2012 DOI: 10.1021/ja210719s
  2. 単糖をキラルに区別する蛍光分子センサーとして機能するホウ素化合物 “Chiral discrimination of monosaccharides using a fluorescent molecular sensor” Tony D. James et al. Nature 1994 DOI: 10.1038/374345a0

 

関連書籍

[amazonjs asin=”4526061646″ locale=”JP” title=”糖鎖のはなし (SCIENCE AND TECHNOLOGY)”][amazonjs asin=”4274209210″ locale=”JP” title=”ベーシックマスター 無機化学”][amazonjs asin=”4832974122″ locale=”JP” title=”鈴木章ノーベル化学賞への道”]

 

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾…
  2. [5+1]環化戦略による触媒的置換シクロヘキサン合成
  3. 単結合を極める
  4. 2014年ノーベル賞受賞者は誰に?ートムソン・ロイター引用栄誉賞…
  5. 生体内での細胞選択的治療を可能とする糖鎖付加人工金属酵素
  6. ヘテロ環、光当てたら、減ってる環
  7. 超多剤耐性結核の新しい治療法が 米国政府の承認を取得
  8. 水中マクロラクタム化を加速する水溶性キャビタンド

注目情報

ピックアップ記事

  1. 不斉ストレッカー反応 Asymmetric Strecker Reaction
  2. 原油高騰 日本企業直撃の恐れ
  3. TEtraQuinoline (TEQ)
  4. 化学物質でiPS細胞を作る
  5. BASF International Summer Courses 2017  BASFワークショップ2017
  6. 夢・化学-21 化学への招待
  7. 生きた細胞内でケイ素と炭素がはじめて結合!
  8. ペプチド鎖が精密に編み込まれた球殻状ナノカプセル〜24交点の絡まりトポロジーをもつ[6]カテナン分子の合成〜
  9. 硤合 憲三 Kenso Soai
  10. 3-ベンジル-5-(2-ヒドロキシエチル)-4-メチルチアゾリウムクロリド / 3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolium Chloride

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP