[スポンサーリンク]

化学者のつぶやき

ホウ素から糖に手渡される宅配便

[スポンサーリンク]

 

非天然の人工に設計した化合物で、一見すると単純な構造をしていますが、興味深い用途が提案されています。このホウ素化合物をあなたならば何に使おうと考えますか?

 

1つめのヒントです。最も期待される応用先は医薬品ですが、これ単品では毒にも薬にもならず、とくに生理活性はありません。何かを助ける物質です。

 

2つめのヒントです。構造式を見てまず目につくのはホウ素原子でしょう。この分子のようなボロン酸のなかまは、複数のヒドロキシ基を隣接して持つ化合物と結合しやすく、とくにはボロン酸の重要な標的となります。単糖にはいくつか種類があるものの、立体障害がなければ、ボロン酸は、糖のヒドロキシ基とホウ酸エステル結合を交わそうとする傾向があります。

GREEN0354.PNG

ボロン酸の性質

3つめのヒントです。アミノ基を導入してある理由は便宜上のものであり、例えばクリックケミストリーでおなじみのアジド基など、別の官能基でも構いません。今回は、カルボジイミドを脱水縮合剤として、この分子でカルボキシル基を修飾するためにアミノ基を導入してあります。

GREEN0353.png

代表的なカルボジイミドのひとつ

EDC; 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride 

このホウ素化合物には、薬物送達(drug delivery)の用途が提案されています[1]。

 

膜タンパク質など細胞表面にある物質を標的にするならばともかく、細胞内部にある物質を標的とした場合、薬剤が細胞膜を通過できなければ、ほとんど効果を発揮することはできません。細胞膜さえ突破できればたくさんの可能性が拓けるにもかかわらず、応用され社会に貢献しないままの物質は数多くあります。とくに、核酸製剤やタンパク質製剤などの高分子は、多様な生理作用を持つにも関わらず、薬物送達が鬼門中の鬼門になって実用をはばんでいます。

薬物送達システムには他の様式もたくさん開発が進められていますが、新参のホウ素化合物[1]の秘訣は細胞の表層にうじゃうじゃと分布する糖鎖にあります。

 

まず準備として、今回のホウ素化合物を、生理活性ペプチドなど細胞内部に運び入れたい分子(図中”Protein”)につなげます。アミノ基を入れてあるのはそのためで、生理活性を持ったタンパク質のカルボキシル基末端や、グルタミン酸アスパラギン酸といった酸性アミノ酸の側鎖にあるカルボキシル基に対して、脱水縮合でつなげていきます。これで用意が完了です。

GREEN0352.png

細胞表層の糖鎖が狙い目!

そして、このホウ素化合物で修飾したタンパク質を、生体に投与します。すると、細胞の表面に林立した糖鎖とホウ酸エステル結合を交わし、その後、修飾されたタンパク質ごとエンドサイトーシス食作用)で細胞内部に取り込まれます。哺乳類の培養細胞で実際に投与してみたところ、期待通り送達され、細胞の内部でタンパク質が機能し、細胞の状態が変化するさまが観察されたとのことです。

 

今後の展望としては、細胞のタイプで異なる糖鎖を認識して、がんなど特定の組織を狙い撃ちする薬物送達を可能にしたいとのこと。確かに、糖をキラルに認識するボロン酸が、以前から報告されています[2]。シンプルな構造だけに、これからどう改良していくか、まだまだたくさんの可能性を秘めているかもしれません。


 

参考論文

  1. 生体へ高分子の薬物送達を仲介するホウ素化合物 ”Boronate-Mediated Biologic Delivery” Gregory A. Ellis et al. J. Am. Chem. Soc. 2012 DOI: 10.1021/ja210719s
  2. 単糖をキラルに区別する蛍光分子センサーとして機能するホウ素化合物 “Chiral discrimination of monosaccharides using a fluorescent molecular sensor” Tony D. James et al. Nature 1994 DOI: 10.1038/374345a0

 

関連書籍

 

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. イオン性置換基を有するホスホール化合物の発光特性
  2. 「一置換カルベン種の単離」—カリフォルニア大学サンディエゴ校・G…
  3. Dead Endを回避せよ!「全合成・極限からの一手」①
  4. リサーチ・アドミニストレーター (URA) という職業を知ってい…
  5. オキソニウムイオンからの最長の炭素酸素間結合
  6. 第99回日本化学会年会 付設展示会ケムステキャンペーン Part…
  7. 私がケムステスタッフになったワケ(1)
  8. 大量合成も可能なシビれる1,2-ジアミン合成法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 目が見えるようになる薬
  2. 三菱商事ナノテク子会社と阪大院、水に濡れるフラーレンを共同開発
  3. 密度汎関数法の基礎
  4. 理系が文系よりおしゃれ?
  5. タンパク質立体構造をPDBjViewerで表示しよう
  6. 水素社会~アンモニアボラン~
  7. パラジウム価格上昇中
  8. 光触媒が可能にする新規C-H/N-Hカップリング
  9. 化学工場で膀胱がん、20人に…労災認定議論へ
  10. 脳を透明化する手法をまとめてみた

関連商品

注目情報

注目情報

最新記事

続・企業の研究を通して感じたこと

自分は、2014年に「企業の研究を通して感じたこと」という記事を執筆しましたが、それから5年が経ち、…

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

Chem-Station Twitter

PAGE TOP