[スポンサーリンク]

一般的な話題

化学物質でiPS細胞を作る

[スポンサーリンク]

「山中伸弥先生、ノーベル賞おめでとうございます」

……という気持ちを共有したく思って、急いで記事を書き上げました。

ニュースで報道されての通り、2012年のノーベル生理学・医学賞に、ジョン・ガードン氏とともに、iPS細胞山中伸弥氏が選ばれました。日本人の受賞、まずはとにかくめでたいことでしょう。

ケムステで記事にするならば(日本人でもそうでなくても)ノーベル化学賞の発表よりは早くないと意味がないと思って急ピッチで作成しましたが、当然ここはケミカル(chemical; 化学物質)に焦点を当ててトピックを紹介したいと思います。

ウイルスで遺伝子操作しなくてもケミカルでiPS細胞が作成できるようになるかも!?

iPS細胞についてのおさらい

さてさて、まずはどういうお話か簡単に確認しておきましょう。

24遺伝子の候補を1個ずつ遺伝子導入しても駄目だが、24個すべて遺伝子導入したところ誘導多能性幹細胞(induced pluripotent stem cell; iPS細胞)になった。ここで、満足せずに、2個ずつならばどうか、3個ずつならばどうか、4個ずつならばどうか、と調べて分かったのが山中因子(Yamanaka factor)の4遺伝子。すなわち、Oct4遺伝子Sox2遺伝子Klf4遺伝子c-Myc遺伝子だったというのが大発見。たった4つだけで分化した細胞をほとんどゼロに近い状態まで巻き戻し、神経細胞や生殖細胞にまでできてしまうのだから、応用の可能性はいくらでも期待できそうです。胚性幹細胞(embryonic stem cell; ES細胞)と違って受精卵を破壊しなくていいというのも、嬉しいことでしょう。

だいたいはこんな感じです。詳しくはどこかで誰かが解説しているでしょう。また、細かいことを言うと山中因子以外の組み合わせがあったり、どの体細胞からはじめるかによっても少し変わったりもするのですが、そのあたり興味ある人は自分で論文をあさってください。

 

ケミカルでiPS細胞を作る

でも、哺乳類細胞に、ウイルスを使ったりして、特別な遺伝子操作がいるんでしょう?

実はその問題、ケミカルで解決できるかもしれないのです。

ひらたく言うと、遺伝子はタンパク質の設計図です。しかし、いつでもタンパク質を作っているわけではありません。遺伝子が発現して、タンパク質を作るか作らないか、スイッチする仕組みが細胞にはあります。普通の体細胞では山中因子はいらないので、どれも発現していません。

Oct4遺伝子・Sox2遺伝子・ Klf4遺伝子・c-Myc遺伝子はどれもすべて転写因子というタイプのタンパク質の設計図になっています。転写因子とは、DNAの特有な配列に結合して遺伝子の発現パターンを調節するタンパク質のことです。山中因子を遺伝子導入してむりやり発現させてやると、それぞれが司令塔になって、遺伝子全体の発現パターンが変化し、iPS細胞になります。

遺伝子の情報はタンパク質の設計図になって、細胞の中で何らかの物質と相互作用してやっと機能を担っています。「iPS細胞になる遺伝子」みたいなお手軽版(笑)はもちろんないわけですね。

ここで考えます。必ずしもウイルスを使って山中因子4つを入れて発現を強制しなくてもいい。ケミカルを投与して細胞内のシグナル伝達経路をかきみだせないだろうか。上手いこと遺伝子の発現パターンをいい感じに調節してあげれば、iPS細胞になるかもしれない。

こういうふうに考えて、手に入る化学物質を片っ端からすべて試すなどして、いくつかそれらしいものが引っかかってきました。これらの化合物を上手い組み合わせで使えば、山中因子4つのうち2つはいらず、残りたった2つの遺伝子導入だけで、iPS細胞をそこそこの効率で作れるようになっています。

GREEN201210iPS1.png

化合物1: アザシチジン(azacytidine)

DNAメチル化酵素阻害剤とされる。DNAはシチジン(C)部位がメチル化されてエピジェネティックに発現が制御されている。この化合物はDNAメチル化を触媒する酵素の機能を阻害することで、遺伝子の発現パターンを変える。バルプロ酸と併用するとiPS細胞の作成効率が上がる。

化合物2: バルプロ酸(valproic acid)

ヒストン脱アセチル化酵素阻害剤とされる。細胞核の中にあるDNAはヒストンと呼ばれるタンパク質に巻きついて存在する。ヒストンはアセチル化などの修飾を受けて機能を変化させる。この化合物はヒストンの脱アセチル化触媒する酵素の機能を阻害することで、遺伝子の発現パターンを変える。Klf4遺伝子とc-Myc遺伝子は導入せず、Oct4遺伝子とSox2遺伝子だけでiPS細胞の作成に成功している。

化合物3: BIX01294

ヒストンメチル化酵素G9a阻害剤とされる。細胞核の中にあるDNAはヒストンと呼ばれるタンパク質に巻きついて存在する。ヒストンはメチル化などの修飾を受けて機能を変化させる。この化合物はヒストンのメチル化を触媒する酵素の機能を阻害することで、遺伝子の発現パターンを変える。Bayk8644と併用すると、Sox2遺伝子とc-Myc遺伝子は導入せず、Oct4遺伝子とKlf4遺伝子だけでiPS細胞の作成に成功している。

化合物4: Bayk8644

カルシウムチャネル活性化剤とされる。一般に細胞内のカルシウム濃度は低く保たれており、一過的なカルシウム濃度の上昇はしばしばシグナル伝達の機能を担っている。

化合物5: ケンパウロン(kenpaullone)

サイクリン依存キナーゼ阻害剤とされる。細胞周期とともに発現が変動するサイクリンと同調して活性が高まるリン酸化酵素がサイクリン依存キナーゼ。Klf4遺伝子は導入せず、Oct4遺伝子とSox2遺伝子とc-Myc遺伝子だけでiPS細胞の作成に成功している。

低分子の化学物質でiPS細胞にブレークスルーは来るのか。今後も期待しておきましょう。

参考論文

  1. “Dissecting direct reprogramming through integrative genomic analysis.” Tarjei S. Mikkelsen et al. Nature 2008 DOI: 10.1038/nature07056
  2. “Induction of pluripotent stem cells from primary human ?broblasts with only Oct4 and Sox2.” Danwei Huangfu et al. Nature Biotechnology 2008 DOI: 10.1038/nbt.1502
  3. “Induction of pluripotent stem cells by de?ned factors is greatly improved by small-molecule compounds.” Danwei Huangfu et al. Nature Biotechnology 2008 DOI: 10.1038/nbt1418
  4. “Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase.” Stefan Kubicek et al. Molcular Cell 2007 DOI: 10.1016/j.molcel.2007.01.017
  5. “A combined chemical and genetic approach for the generation of induced pluripotent stem cells.” Yan Shi et al. Cell Stem Cell 2008 DOI: 10.1016/j.stem.2008.05.011
  6. “Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds.” Yan Shi et al. Cell Stem Cell 2008 DOI: 10.1016/j.stem.2008.10.004
  7. “Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4.” Costas A. Lyssiotis et al. Proc. Natl. Acad. Sci. USA 2009 DOI: 10.1073pnas.0903860106

 

関連書籍

Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 植物生合成の謎を解明!?Heteroyohimbine の立体制…
  2. マンチニールの不思議な話 ~ウィリアム・ダンピアの記録から~
  3. アルキルアミンをボロン酸エステルに変換する
  4. 研究生活の心構えー修士課程、博士課程に進学したあなたへー
  5. 「フラストレイティド・ルイスペアが拓く革新的変換」ミュンスター大…
  6. プロペランの真ん中
  7. 【速報】2017年ノーベル化学賞は「クライオ電子顕微鏡の開発」に…
  8. アイルランドに行ってきた①

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2020年5月号:特集号 ニューモダリティ;有機合成化学の新しい可能性
  2. ヘメツバーガー インドール合成 Hemetsberger Indole Synthesis
  3. 谷野 圭持 Keiji Tanino
  4. 論説フォーラム「研究の潮目が変わったSDGsは化学が主役にーさあ、始めよう!」
  5. 静電相互作用を駆動力とする典型元素触媒
  6. 有機合成反応で乳がん手術を改革
  7. クラベ アレン合成 Crabbe Allene Synthesis
  8. ベンゾ[1,2-b:4,5-b’]ジチオフェン:Benzo[1,2-b:4,5-b’]dithiophene
  9. 独メルク、米シグマアルドリッチを買収
  10. メチオニン選択的タンパク質修飾反応 Met-Selective Protein Modification

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

【ケムステSlackに訊いてみた】有機合成を学ぶオススメ参考書を教えて!

日本初のオープン化学コミュニティ・ケムステSlackを立ち上げてもうすぐ2年が経ちます。かな…

第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催します!

そろそろケムステVシンポも開始しますが、その前にもう一度Vプレレクのお知らせです。3月末に第…

第8回慶應有機化学若手シンポジウム

ご案内有機合成・反応化学、天然物化学・ケミカルバイオロジー、生物 有機化学・医化学、有機材料化学…

第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授

第141回の海外化学者インタビューはセバスチャン・ペリエ教授です。シドニー大学化学科(訳注:現在はワ…

Chem-Station Twitter

PAGE TOP