[スポンサーリンク]

一般的な話題

化学物質でiPS細胞を作る

[スポンサーリンク]

「山中伸弥先生、ノーベル賞おめでとうございます」

……という気持ちを共有したく思って、急いで記事を書き上げました。

ニュースで報道されての通り、2012年のノーベル生理学・医学賞に、ジョン・ガードン氏とともに、iPS細胞山中伸弥氏が選ばれました。日本人の受賞、まずはとにかくめでたいことでしょう。

ケムステで記事にするならば(日本人でもそうでなくても)ノーベル化学賞の発表よりは早くないと意味がないと思って急ピッチで作成しましたが、当然ここはケミカル(chemical; 化学物質)に焦点を当ててトピックを紹介したいと思います。

ウイルスで遺伝子操作しなくてもケミカルでiPS細胞が作成できるようになるかも!?

iPS細胞についてのおさらい

さてさて、まずはどういうお話か簡単に確認しておきましょう。

24遺伝子の候補を1個ずつ遺伝子導入しても駄目だが、24個すべて遺伝子導入したところ誘導多能性幹細胞(induced pluripotent stem cell; iPS細胞)になった。ここで、満足せずに、2個ずつならばどうか、3個ずつならばどうか、4個ずつならばどうか、と調べて分かったのが山中因子(Yamanaka factor)の4遺伝子。すなわち、Oct4遺伝子Sox2遺伝子Klf4遺伝子c-Myc遺伝子だったというのが大発見。たった4つだけで分化した細胞をほとんどゼロに近い状態まで巻き戻し、神経細胞や生殖細胞にまでできてしまうのだから、応用の可能性はいくらでも期待できそうです。胚性幹細胞(embryonic stem cell; ES細胞)と違って受精卵を破壊しなくていいというのも、嬉しいことでしょう。

だいたいはこんな感じです。詳しくはどこかで誰かが解説しているでしょう。また、細かいことを言うと山中因子以外の組み合わせがあったり、どの体細胞からはじめるかによっても少し変わったりもするのですが、そのあたり興味ある人は自分で論文をあさってください。

 

ケミカルでiPS細胞を作る

でも、哺乳類細胞に、ウイルスを使ったりして、特別な遺伝子操作がいるんでしょう?

実はその問題、ケミカルで解決できるかもしれないのです。

ひらたく言うと、遺伝子はタンパク質の設計図です。しかし、いつでもタンパク質を作っているわけではありません。遺伝子が発現して、タンパク質を作るか作らないか、スイッチする仕組みが細胞にはあります。普通の体細胞では山中因子はいらないので、どれも発現していません。

Oct4遺伝子・Sox2遺伝子・ Klf4遺伝子・c-Myc遺伝子はどれもすべて転写因子というタイプのタンパク質の設計図になっています。転写因子とは、DNAの特有な配列に結合して遺伝子の発現パターンを調節するタンパク質のことです。山中因子を遺伝子導入してむりやり発現させてやると、それぞれが司令塔になって、遺伝子全体の発現パターンが変化し、iPS細胞になります。

遺伝子の情報はタンパク質の設計図になって、細胞の中で何らかの物質と相互作用してやっと機能を担っています。「iPS細胞になる遺伝子」みたいなお手軽版(笑)はもちろんないわけですね。

ここで考えます。必ずしもウイルスを使って山中因子4つを入れて発現を強制しなくてもいい。ケミカルを投与して細胞内のシグナル伝達経路をかきみだせないだろうか。上手いこと遺伝子の発現パターンをいい感じに調節してあげれば、iPS細胞になるかもしれない。

こういうふうに考えて、手に入る化学物質を片っ端からすべて試すなどして、いくつかそれらしいものが引っかかってきました。これらの化合物を上手い組み合わせで使えば、山中因子4つのうち2つはいらず、残りたった2つの遺伝子導入だけで、iPS細胞をそこそこの効率で作れるようになっています。

GREEN201210iPS1.png

化合物1: アザシチジン(azacytidine)

DNAメチル化酵素阻害剤とされる。DNAはシチジン(C)部位がメチル化されてエピジェネティックに発現が制御されている。この化合物はDNAメチル化を触媒する酵素の機能を阻害することで、遺伝子の発現パターンを変える。バルプロ酸と併用するとiPS細胞の作成効率が上がる。

化合物2: バルプロ酸(valproic acid)

ヒストン脱アセチル化酵素阻害剤とされる。細胞核の中にあるDNAはヒストンと呼ばれるタンパク質に巻きついて存在する。ヒストンはアセチル化などの修飾を受けて機能を変化させる。この化合物はヒストンの脱アセチル化触媒する酵素の機能を阻害することで、遺伝子の発現パターンを変える。Klf4遺伝子とc-Myc遺伝子は導入せず、Oct4遺伝子とSox2遺伝子だけでiPS細胞の作成に成功している。

化合物3: BIX01294

ヒストンメチル化酵素G9a阻害剤とされる。細胞核の中にあるDNAはヒストンと呼ばれるタンパク質に巻きついて存在する。ヒストンはメチル化などの修飾を受けて機能を変化させる。この化合物はヒストンのメチル化を触媒する酵素の機能を阻害することで、遺伝子の発現パターンを変える。Bayk8644と併用すると、Sox2遺伝子とc-Myc遺伝子は導入せず、Oct4遺伝子とKlf4遺伝子だけでiPS細胞の作成に成功している。

化合物4: Bayk8644

カルシウムチャネル活性化剤とされる。一般に細胞内のカルシウム濃度は低く保たれており、一過的なカルシウム濃度の上昇はしばしばシグナル伝達の機能を担っている。

化合物5: ケンパウロン(kenpaullone)

サイクリン依存キナーゼ阻害剤とされる。細胞周期とともに発現が変動するサイクリンと同調して活性が高まるリン酸化酵素がサイクリン依存キナーゼ。Klf4遺伝子は導入せず、Oct4遺伝子とSox2遺伝子とc-Myc遺伝子だけでiPS細胞の作成に成功している。

低分子の化学物質でiPS細胞にブレークスルーは来るのか。今後も期待しておきましょう。

参考論文

  1. “Dissecting direct reprogramming through integrative genomic analysis.” Tarjei S. Mikkelsen et al. Nature 2008 DOI: 10.1038/nature07056
  2. “Induction of pluripotent stem cells from primary human ?broblasts with only Oct4 and Sox2.” Danwei Huangfu et al. Nature Biotechnology 2008 DOI: 10.1038/nbt.1502
  3. “Induction of pluripotent stem cells by de?ned factors is greatly improved by small-molecule compounds.” Danwei Huangfu et al. Nature Biotechnology 2008 DOI: 10.1038/nbt1418
  4. “Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase.” Stefan Kubicek et al. Molcular Cell 2007 DOI: 10.1016/j.molcel.2007.01.017
  5. “A combined chemical and genetic approach for the generation of induced pluripotent stem cells.” Yan Shi et al. Cell Stem Cell 2008 DOI: 10.1016/j.stem.2008.05.011
  6. “Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds.” Yan Shi et al. Cell Stem Cell 2008 DOI: 10.1016/j.stem.2008.10.004
  7. “Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4.” Costas A. Lyssiotis et al. Proc. Natl. Acad. Sci. USA 2009 DOI: 10.1073pnas.0903860106

 

関連書籍

[amazonjs asin=”4121023145″ locale=”JP” title=”iPS細胞 不可能を可能にした細胞 (中公新書)”][amazonjs asin=”4062577275″ locale=”JP” title=”iPS細胞とはなにか―万能細胞研究の現在 (ブルーバックス)”]
Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 新奇蛍光分子トリアザペンタレンの極小蛍光標識基への展開
  2. 自励振動ポリマーブラシ表面の創製
  3. ホウ酸団子のはなし
  4. 二重可変領域を修飾先とする均質抗体―薬物複合体製造法
  5. ペプチドの精密な「立体ジッパー」構造の人工合成に成功
  6. 光触媒反応用途の青色LED光源を比較してみた【2020/8/11…
  7. 書類選考は3分で決まる!面接に進める人、進めない人
  8. 天才児の見つけ方・育て方

注目情報

ピックアップ記事

  1. 電子実験ノートもクラウドの時代? Accelrys Notebook
  2. IKCOC-15 ー今年の秋は京都で国際会議に参加しよう
  3. 活性ベースタンパク質プロファイリング Activity-Based Protein Profiling
  4. 広がる産総研の連携拠点
  5. 2010年日本化学会各賞発表-進歩賞-
  6. タンパク質の定量法―ブラッドフォード法 Protein Quantification – Bradford Protein Assay
  7. Nitrogen Enriched Gasoline・・・って何だ?
  8. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー
  9. チャオ=ジュン・リー Chao-Jun Li
  10. Callipeltosideの全合成と構造訂正

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

ケムステ版・ノーベル化学賞候補者リスト【2024年版】

今年もノーベル賞シーズンが近づいてきました!各媒体からかき集めた情報を元に、「未…

有機合成化学協会誌2024年9月号:ホウ素媒介アグリコン転移反応・有機電解合成・ヘキサヒドロインダン骨格・MHAT/RPC機構・CDC反応

有機合成化学協会が発行する有機合成化学協会誌、2024年9月号がオンライン公開されています。…

初歩から学ぶ無機化学

概要本書は,高等学校で学ぶ化学の一歩先を扱っています。読者の皆様には,工学部や理学部,医学部…

理研の研究者が考える“実験ロボット”の未来とは?

bergです。昨今、人工知能(AI)が社会を賑わせており、関連のトピックスを耳にしない日はないといっ…

【9月開催】 【第二期 マツモトファインケミカル技術セミナー開催】有機金属化合物 オルガチックスを用いたゾルゲル法とプロセス制御ノウハウ①

セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチック…

2024年度 第24回グリーン・サステイナブル ケミストリー賞 候補業績 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブル ケミストリー ネットワーク会議(略称: …

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

開催日時 2024.09.11 15:00-16:00 申込みはこちら開催概要持続可能な…

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP