[スポンサーリンク]

化学者のつぶやき

水中マクロラクタム化を加速する水溶性キャビタンド

[スポンサーリンク]

2015年、スクリプス研究所・Julius Rebek Jr.らは、水溶性キャビタンド化合物をテンプレートとし、長鎖ω-アミノ酸を水中でマクロラクタム化する方法論を開発した。

“A Deep Cavitand Templates Lactam Formation in Water”

Mosca, S.; Yu, Y.; Gavette, J. V.; Zhang, K.-D.; Rebek, J.*, Jr. J. Am. Chem. Soc. 2015, 137, 14582-14585. DOI: 10.1021/jacs.5b10028 (アイキャッチ画像は本論文より引用)

問題設定

大環状化反応は有機化学における基本反応の一つであるが、中員環化は渡環反発のためとくに難しくなり、大員環化は反応点が近接化しづらいためこれも難しい。そのため、反応効率は基質が備える配座規制(不飽和結合数や縮環骨格)に大きく依存する。そのような構造要素を含まない場合には、高希釈条件をもちいてオリゴマー形成を抑制するか、金属イオンの鋳型効果を活用しなくてはならないケースが多い。また、マクロラクタム化やマクロラクトン化といった脱水縮合反応については、当然ながら水中での実施は困難を極める。

技術や手法のキモ

Rebekらはこの課題に対し、長年研究対象としてきた独自ホスト分子・水溶性キャビタンド[1]を用いることで、全く新しい問題解決策の提案を試みた。すなわち、水溶性キャビタンドにω-アミノ酸を屈曲配座の形で取り込ませ、反応末端を強制的に近接させることで水中でのマクロラクタム化を試みた

キャビタンド1では親水性ウレア構造が開口部を囲む形で水素結合し、さらに二量化することで疎水性化合物を取り込める空間を創り出している。大きなサイズの炭化水素分子については、図の様に屈曲配座で取り込まれることも分かっている[1b]。

今回の研究では過去に開発されたピリジニウム置換型キャビタンド1ではなく、新たに用意したイミダゾリウム置換型キャビタンド2を用いて研究を行なっている。1よりも2のほうがω-アミノ酸を取り込む効率が高く、また水溶性に優れる(up to 17 mM)ためである。

論文[1]より引用・改変

主張の有効性検証

ω-アミノ酸の脂肪鎖部分は、疎水性相互作用によってキャビタンド凹面に張り付き、屈曲配座をとる。結果として、カルボン酸・アミン部位は開口部に近接して位置することになる。今回の実験では、特にC11とC12のものが取り込まれやすいことが分かったので、ω-アミノウンデカン酸およびω-アミノドデカン酸を用いている。複合体に、縮合剤EDCと水溶性活性化剤sulfo-NHSを混合し、環化反応の様子を1H NMR(D2O)でモニタリングした。

冒頭論文より引用

ω-アミノドデカン酸(3, SM)とキャビタンド12の混合NMRチャートを以下に示す。キャビタンドのメチンピークがおよそ5.6 ppm付近に、取り込まれたアミノ酸の脂肪鎖が高磁場(0 ppm以下)に登場するため、基質の取り込まれている様子が分かる。競合実験によって2のほうが基質を良く取り込み、強塩基NaODの添加に対しても、2のほうが取り込みに影響を受けにくいことも分かる。

冒頭論文より引用・改変

この脂肪鎖の部分を拡大して、ラクタム化試薬(EDC)添加に伴うNMR変化をモニターした。EDCの添加に従って原料3のピークが減り、生成物4に特徴的なピークが増えていくことが分かる。キャビタンド無しではオリゴマー生成が優先してしまい、効率が悪い。

冒頭論文より引用・改変

結果として、キャビタンド2の存在によって環化効率が2.8倍向上していると計算された。ω-アミノウンデカン酸の場合も同様の実験を行なっており、環化効率が4.1倍になることを示している。

また-アミノウンデカン酸塩酸塩のp-ニトロフェニルエステルを調製し、キャビタンド2の存在下でNaODを加えて環化を行なわせると、望む大環状ラクタムが得られることも確かめている。この場合は、キャビタンド無しの高希釈条件では全く目的物が得られない。

議論すべき点

  • 論文中にも明記されているが、当量もしくは過剰のキャビタンド化合物が必要になってしまうことが課題。シャペロンのように触媒的に用いるには、環化をトリガーにしてホスト-ゲスト親和性を下げる工夫が必要になる。本反応はカルボン酸+アミン→アミドの変換であるため、分子の極性自体は下がるはずだが、動的な分子交換には不十分な差異しか出ないのだろう。たとえばキャビタンドのウレア部位をより高極性に(グアニジンなど)変えたものを作って、極性相互作用の差異を明確化することができれば達成されるかも知れない。
  • 基質拡張の後続研究として、ジアミン、ジイソシアネートを用いた大環状化反応が報告されている[2]。ほとんど同じコンセプトであるため、今回は割愛。

未解決問題へのアプローチ

  • 触媒化を達成する目的で、超分子カプセルの中に基質を取り込み、confined space中で触媒反応を行なった各種事例は参考にしたい[3]。電荷を持つ原料から反応によって電荷を消失させるなど、基質・反応形式に工夫を凝らしている印象がある。

参考文献

  1. (a) Zhang, K. D.; Ajami, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2013, 135, 18064. DOI: 10.1021/ja410644p (b) Gavette, J. V.; Zhang, K.-D.; Ajami, D.; Rebek, J., Jr. Org. Biomol. Chem. 2014, 12, 6561. doi:10.1039/C4OB01032A (c) Zhang, K.-D.; Ajami, D.; Gavette, J. V.; Rebek, J., Jr. Chem. Commun. 2014, 50, 4895. doi:10.1039/C4CC01643B
  2. (a) Wu, N.-W.; Rebek, J., Jr. J. Am. Chem. Soc. 2016, 138, 7512. DOI: 10.1021/jacs.6b04278 (b) Shi, Q.; Masseroni, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2016, 138, 10846. DOI: 10.1021/jacs.6b06950
  3. (a) Leenders, S. H. A. M.; Gramage,-Doria, R.; de Bruin, B.; Reek, J. N. H. Chem. Soc. Rev. 2015, 44, 433. doi:10.1039/C4CS00192C (b) Vardhan, H.; Verpoort, F. Adv. Synth. Catal. 2015, 357, 1351. doi:10.1002/adsc.201400778 (c) Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012. DOI: 10.1021/cr4001226
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 創薬化学における「フッ素のダークサイド」
  2. 近況報告PartI
  3. 同位体効果の解釈にはご注意を!
  4. 第21回ケムステVシンポ「Grubbs触媒が導く合成戦略」を開催…
  5. アメリカで Ph.D. を取る -Visiting Weeken…
  6. N-オキシドの性質と創薬における活用
  7. 塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応
  8. マルチディスプレイを活用していますか?

注目情報

ピックアップ記事

  1. 越野 広雪 Hiroyuki Koshino
  2. MOFを用いることでポリアセンの合成に成功!
  3. セブンシスターズについて② ~世を統べる資源会社~
  4. 続・企業の研究を通して感じたこと
  5. Akzonobelとはどんな会社? 
  6. ジオトロピー転位 dyotropic rearrangement
  7. フラックス結晶育成法入門
  8. テトラブチルアンモニウムジフルオロトリフェニルシリカート:Tetrabutylammonium Difluorotriphenylsilicate
  9. ディーター・ゼーバッハ Dieter Seebach
  10. とある難病の薬 ~アザシチジンとその仲間~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年7月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP