[スポンサーリンク]

化学者のつぶやき

水中マクロラクタム化を加速する水溶性キャビタンド

[スポンサーリンク]

2015年、スクリプス研究所・Julius Rebek Jr.らは、水溶性キャビタンド化合物をテンプレートとし、長鎖ω-アミノ酸を水中でマクロラクタム化する方法論を開発した。

“A Deep Cavitand Templates Lactam Formation in Water”

Mosca, S.; Yu, Y.; Gavette, J. V.; Zhang, K.-D.; Rebek, J.*, Jr. J. Am. Chem. Soc. 2015, 137, 14582-14585. DOI: 10.1021/jacs.5b10028 (アイキャッチ画像は本論文より引用)

問題設定

大環状化反応は有機化学における基本反応の一つであるが、中員環化は渡環反発のためとくに難しくなり、大員環化は反応点が近接化しづらいためこれも難しい。そのため、反応効率は基質が備える配座規制(不飽和結合数や縮環骨格)に大きく依存する。そのような構造要素を含まない場合には、高希釈条件をもちいてオリゴマー形成を抑制するか、金属イオンの鋳型効果を活用しなくてはならないケースが多い。また、マクロラクタム化やマクロラクトン化といった脱水縮合反応については、当然ながら水中での実施は困難を極める。

技術や手法のキモ

Rebekらはこの課題に対し、長年研究対象としてきた独自ホスト分子・水溶性キャビタンド[1]を用いることで、全く新しい問題解決策の提案を試みた。すなわち、水溶性キャビタンドにω-アミノ酸を屈曲配座の形で取り込ませ、反応末端を強制的に近接させることで水中でのマクロラクタム化を試みた

キャビタンド1では親水性ウレア構造が開口部を囲む形で水素結合し、さらに二量化することで疎水性化合物を取り込める空間を創り出している。大きなサイズの炭化水素分子については、図の様に屈曲配座で取り込まれることも分かっている[1b]。

今回の研究では過去に開発されたピリジニウム置換型キャビタンド1ではなく、新たに用意したイミダゾリウム置換型キャビタンド2を用いて研究を行なっている。1よりも2のほうがω-アミノ酸を取り込む効率が高く、また水溶性に優れる(up to 17 mM)ためである。

論文[1]より引用・改変

主張の有効性検証

ω-アミノ酸の脂肪鎖部分は、疎水性相互作用によってキャビタンド凹面に張り付き、屈曲配座をとる。結果として、カルボン酸・アミン部位は開口部に近接して位置することになる。今回の実験では、特にC11とC12のものが取り込まれやすいことが分かったので、ω-アミノウンデカン酸およびω-アミノドデカン酸を用いている。複合体に、縮合剤EDCと水溶性活性化剤sulfo-NHSを混合し、環化反応の様子を1H NMR(D2O)でモニタリングした。

冒頭論文より引用

ω-アミノドデカン酸(3, SM)とキャビタンド12の混合NMRチャートを以下に示す。キャビタンドのメチンピークがおよそ5.6 ppm付近に、取り込まれたアミノ酸の脂肪鎖が高磁場(0 ppm以下)に登場するため、基質の取り込まれている様子が分かる。競合実験によって2のほうが基質を良く取り込み、強塩基NaODの添加に対しても、2のほうが取り込みに影響を受けにくいことも分かる。

冒頭論文より引用・改変

この脂肪鎖の部分を拡大して、ラクタム化試薬(EDC)添加に伴うNMR変化をモニターした。EDCの添加に従って原料3のピークが減り、生成物4に特徴的なピークが増えていくことが分かる。キャビタンド無しではオリゴマー生成が優先してしまい、効率が悪い。

冒頭論文より引用・改変

結果として、キャビタンド2の存在によって環化効率が2.8倍向上していると計算された。ω-アミノウンデカン酸の場合も同様の実験を行なっており、環化効率が4.1倍になることを示している。

また-アミノウンデカン酸塩酸塩のp-ニトロフェニルエステルを調製し、キャビタンド2の存在下でNaODを加えて環化を行なわせると、望む大環状ラクタムが得られることも確かめている。この場合は、キャビタンド無しの高希釈条件では全く目的物が得られない。

議論すべき点

  • 論文中にも明記されているが、当量もしくは過剰のキャビタンド化合物が必要になってしまうことが課題。シャペロンのように触媒的に用いるには、環化をトリガーにしてホスト-ゲスト親和性を下げる工夫が必要になる。本反応はカルボン酸+アミン→アミドの変換であるため、分子の極性自体は下がるはずだが、動的な分子交換には不十分な差異しか出ないのだろう。たとえばキャビタンドのウレア部位をより高極性に(グアニジンなど)変えたものを作って、極性相互作用の差異を明確化することができれば達成されるかも知れない。
  • 基質拡張の後続研究として、ジアミン、ジイソシアネートを用いた大環状化反応が報告されている[2]。ほとんど同じコンセプトであるため、今回は割愛。

未解決問題へのアプローチ

  • 触媒化を達成する目的で、超分子カプセルの中に基質を取り込み、confined space中で触媒反応を行なった各種事例は参考にしたい[3]。電荷を持つ原料から反応によって電荷を消失させるなど、基質・反応形式に工夫を凝らしている印象がある。

参考文献

  1. (a) Zhang, K. D.; Ajami, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2013, 135, 18064. DOI: 10.1021/ja410644p (b) Gavette, J. V.; Zhang, K.-D.; Ajami, D.; Rebek, J., Jr. Org. Biomol. Chem. 2014, 12, 6561. doi:10.1039/C4OB01032A (c) Zhang, K.-D.; Ajami, D.; Gavette, J. V.; Rebek, J., Jr. Chem. Commun. 2014, 50, 4895. doi:10.1039/C4CC01643B
  2. (a) Wu, N.-W.; Rebek, J., Jr. J. Am. Chem. Soc. 2016, 138, 7512. DOI: 10.1021/jacs.6b04278 (b) Shi, Q.; Masseroni, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2016, 138, 10846. DOI: 10.1021/jacs.6b06950
  3. (a) Leenders, S. H. A. M.; Gramage,-Doria, R.; de Bruin, B.; Reek, J. N. H. Chem. Soc. Rev. 2015, 44, 433. doi:10.1039/C4CS00192C (b) Vardhan, H.; Verpoort, F. Adv. Synth. Catal. 2015, 357, 1351. doi:10.1002/adsc.201400778 (c) Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012. DOI: 10.1021/cr4001226
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 『Ph.D.』の起源をちょっと調べてみました① 概要編
  2. ケムステVシンポ、CSJカレントレビューとコラボします
  3. rhodomolleins XX と XXIIの全合成
  4. ノーベル化学賞解説 on Twitter
  5. 不活性アルケンの分子間[2+2]環化付加反応
  6. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  7. 有機合成化学協会誌2018年11月号:オープンアクセス・英文号!…
  8. ルーブ・ゴールドバーグ反応 その1

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 歪んだアルキンへ付加反応の位置選択性を予測する
  2. 小スケール反応での注意点 失敗しないための処方箋
  3. カーボンナノペーパー開発 信州大、ナノテク新素材
  4. 牛糞からプラスチック原料 水素とベンゼン、北大が成功
  5. 1,3-ジチアン 1,3-Dithiane
  6. ウィッティヒ反応 Wittig Reaction
  7. 不斉触媒研究論文引用回数、東大柴崎教授が世界1位
  8. 有機合成化学協会誌2020年3月号:電子欠損性ホウ素化合物・不斉Diels-Alder反応・ホヤの精子活性化誘引物質・選択的グリコシル化反応・固定化二元金属ナノ粒子触媒・連続フロー反応
  9. 痔の薬のはなし 真剣に調べる
  10. アセタール系保護基 Acetal Protective Group

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第120回―「医薬につながる複雑な天然物を全合成する」Richmond Sarpong教授

第120回の海外化学者インタビューは、リッチモンド・サーポン教授です。カリフォルニア大学バークレー校…

DNAナノ構造体が誘起・制御する液-液相分離

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。液-液相分離は近年の一…

常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)

一般的な特長Rh-Pt/(DMPSi-Al2O3)は、優れた活性を示す水素還元(水添)触媒です。…

世界最高の耐久性を示すプロパン脱水素触媒

第273回のスポットライトリサーチは、北海道大学触媒科学研究所・中谷勇希さんにお願いしました。…

第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士

第119回の海外化学者インタビューは、アーロン・ライト博士です。パシフィック・ノースウエスト国立研究…

化学者のためのエレクトロニクス講座~化合物半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

次世代電池の開発と市場予測について調査結果を発表

この程、TPC マーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、 次…

有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PNNP四座配位子・π共役系有機分子・フェンタニル混入ヘロイン・プロオリゴ型核酸医薬

有機合成化学協会が発行する有機合成化学協会誌、2020年9月号がオンライン公開されました。完…

Chem-Station Twitter

PAGE TOP