[スポンサーリンク]

化学者のつぶやき

水中マクロラクタム化を加速する水溶性キャビタンド

2015年、スクリプス研究所・Julius Rebek Jr.らは、水溶性キャビタンド化合物をテンプレートとし、長鎖ω-アミノ酸を水中でマクロラクタム化する方法論を開発した。

“A Deep Cavitand Templates Lactam Formation in Water”

Mosca, S.; Yu, Y.; Gavette, J. V.; Zhang, K.-D.; Rebek, J.*, Jr. J. Am. Chem. Soc. 2015, 137, 14582-14585. DOI: 10.1021/jacs.5b10028 (アイキャッチ画像は本論文より引用)

問題設定

大環状化反応は有機化学における基本反応の一つであるが、中員環化は渡環反発のためとくに難しくなり、大員環化は反応点が近接化しづらいためこれも難しい。そのため、反応効率は基質が備える配座規制(不飽和結合数や縮環骨格)に大きく依存する。そのような構造要素を含まない場合には、高希釈条件をもちいてオリゴマー形成を抑制するか、金属イオンの鋳型効果を活用しなくてはならないケースが多い。また、マクロラクタム化やマクロラクトン化といった脱水縮合反応については、当然ながら水中での実施は困難を極める。

技術や手法のキモ

Rebekらはこの課題に対し、長年研究対象としてきた独自ホスト分子・水溶性キャビタンド[1]を用いることで、全く新しい問題解決策の提案を試みた。すなわち、水溶性キャビタンドにω-アミノ酸を屈曲配座の形で取り込ませ、反応末端を強制的に近接させることで水中でのマクロラクタム化を試みた

キャビタンド1では親水性ウレア構造が開口部を囲む形で水素結合し、さらに二量化することで疎水性化合物を取り込める空間を創り出している。大きなサイズの炭化水素分子については、図の様に屈曲配座で取り込まれることも分かっている[1b]。

今回の研究では過去に開発されたピリジニウム置換型キャビタンド1ではなく、新たに用意したイミダゾリウム置換型キャビタンド2を用いて研究を行なっている。1よりも2のほうがω-アミノ酸を取り込む効率が高く、また水溶性に優れる(up to 17 mM)ためである。

論文[1]より引用・改変

主張の有効性検証

ω-アミノ酸の脂肪鎖部分は、疎水性相互作用によってキャビタンド凹面に張り付き、屈曲配座をとる。結果として、カルボン酸・アミン部位は開口部に近接して位置することになる。今回の実験では、特にC11とC12のものが取り込まれやすいことが分かったので、ω-アミノウンデカン酸およびω-アミノドデカン酸を用いている。複合体に、縮合剤EDCと水溶性活性化剤sulfo-NHSを混合し、環化反応の様子を1H NMR(D2O)でモニタリングした。

冒頭論文より引用

ω-アミノドデカン酸(3, SM)とキャビタンド12の混合NMRチャートを以下に示す。キャビタンドのメチンピークがおよそ5.6 ppm付近に、取り込まれたアミノ酸の脂肪鎖が高磁場(0 ppm以下)に登場するため、基質の取り込まれている様子が分かる。競合実験によって2のほうが基質を良く取り込み、強塩基NaODの添加に対しても、2のほうが取り込みに影響を受けにくいことも分かる。

冒頭論文より引用・改変

この脂肪鎖の部分を拡大して、ラクタム化試薬(EDC)添加に伴うNMR変化をモニターした。EDCの添加に従って原料3のピークが減り、生成物4に特徴的なピークが増えていくことが分かる。キャビタンド無しではオリゴマー生成が優先してしまい、効率が悪い。

冒頭論文より引用・改変

結果として、キャビタンド2の存在によって環化効率が2.8倍向上していると計算された。ω-アミノウンデカン酸の場合も同様の実験を行なっており、環化効率が4.1倍になることを示している。

また-アミノウンデカン酸塩酸塩のp-ニトロフェニルエステルを調製し、キャビタンド2の存在下でNaODを加えて環化を行なわせると、望む大環状ラクタムが得られることも確かめている。この場合は、キャビタンド無しの高希釈条件では全く目的物が得られない。

議論すべき点

  • 論文中にも明記されているが、当量もしくは過剰のキャビタンド化合物が必要になってしまうことが課題。シャペロンのように触媒的に用いるには、環化をトリガーにしてホスト-ゲスト親和性を下げる工夫が必要になる。本反応はカルボン酸+アミン→アミドの変換であるため、分子の極性自体は下がるはずだが、動的な分子交換には不十分な差異しか出ないのだろう。たとえばキャビタンドのウレア部位をより高極性に(グアニジンなど)変えたものを作って、極性相互作用の差異を明確化することができれば達成されるかも知れない。
  • 基質拡張の後続研究として、ジアミン、ジイソシアネートを用いた大環状化反応が報告されている[2]。ほとんど同じコンセプトであるため、今回は割愛。

未解決問題へのアプローチ

  • 触媒化を達成する目的で、超分子カプセルの中に基質を取り込み、confined space中で触媒反応を行なった各種事例は参考にしたい[3]。電荷を持つ原料から反応によって電荷を消失させるなど、基質・反応形式に工夫を凝らしている印象がある。

参考文献

  1. (a) Zhang, K. D.; Ajami, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2013, 135, 18064. DOI: 10.1021/ja410644p (b) Gavette, J. V.; Zhang, K.-D.; Ajami, D.; Rebek, J., Jr. Org. Biomol. Chem. 2014, 12, 6561. doi:10.1039/C4OB01032A (c) Zhang, K.-D.; Ajami, D.; Gavette, J. V.; Rebek, J., Jr. Chem. Commun. 2014, 50, 4895. doi:10.1039/C4CC01643B
  2. (a) Wu, N.-W.; Rebek, J., Jr. J. Am. Chem. Soc. 2016, 138, 7512. DOI: 10.1021/jacs.6b04278 (b) Shi, Q.; Masseroni, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2016, 138, 10846. DOI: 10.1021/jacs.6b06950
  3. (a) Leenders, S. H. A. M.; Gramage,-Doria, R.; de Bruin, B.; Reek, J. N. H. Chem. Soc. Rev. 2015, 44, 433. doi:10.1039/C4CS00192C (b) Vardhan, H.; Verpoort, F. Adv. Synth. Catal. 2015, 357, 1351. doi:10.1002/adsc.201400778 (c) Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012. DOI: 10.1021/cr4001226
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 表裏二面性をもつ「ヤヌス型分子」の合成
  2. 科学を理解しようとしない人に科学を語ることに意味はあるのか?
  3. 砂糖水からモルヒネ?
  4. Dead Endを回避せよ!「全合成・極限からの一手」⑤(解答編…
  5. 光触媒の活性化機構の解明研究
  6. もし炭素原子の手が6本あったら
  7. 研究室クラウド設立のススメ(経緯編)
  8. 超難関天然物 Palau’amine・ついに陥落

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機レドックスフロー電池 (ORFB)の新展開:オリゴマー活物質の利用
  2. ジアゾメタン
  3. ウィリアム・ロウシュ William R. Roush
  4. 世界最高の活性を示すアンモニア合成触媒の開発
  5. 三共と第一製薬が正式に合併契約締結
  6. E値 Environmental(E)-factor
  7. 2つの触媒反応を”孤立空間”で連続的に行う
  8. 高収率・高選択性―信頼性の限界はどこにある?
  9. 旭化成ファーマ、北海道に「コエンザイムQ10」の生産拠点を新設
  10. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成功

関連商品

注目情報

注目情報

最新記事

ラジカルと有機金属の反応を駆使した第3級アルキル鈴木―宮浦型カップリング

第154回のスポットライトリサーチは、中村 公昭(なかむら きみあき)博士にお願いしました。中村さん…

有機合成化学協会誌2018年8月号:触媒的不斉全合成・分子ローター型蛍光核酸・インドロキナゾリンアルカロイド・非対称化・アズレン・ヒドラゾン-パラジウム触媒

有機合成化学協会が発行する有機合成化学協会誌、2018年8月号がオンライン公開されました。今…

Noah Z. Burns ノア・バーンズ

ノア・バーンズ(Noah Z. Burns、19xx年x月xx日-)は、米国の有機合成化学者である。…

結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開

ケンブリッジ結晶学データセンターとFIZ Karlsruhe は,無償で利用できる結晶データの登録・…

可視光で芳香環を立体選択的に壊す

キラルルイス酸光触媒を用いた不斉脱芳香族的付加環化反応が開発された。ヘテロ芳香環の芳香族性を壊しなが…

科学とは「世界中で共有できるワクワクの源」! 2018年度ロレアル-ユネスコ女性科学者 日本奨励賞

2018年7月18日、フランス大使公邸にて2018年度ロレアル-ユネスコ女性科学者 日本奨励賞の授賞…

PAGE TOP