[スポンサーリンク]

化学者のつぶやき

水中マクロラクタム化を加速する水溶性キャビタンド

[スポンサーリンク]

2015年、スクリプス研究所・Julius Rebek Jr.らは、水溶性キャビタンド化合物をテンプレートとし、長鎖ω-アミノ酸を水中でマクロラクタム化する方法論を開発した。

“A Deep Cavitand Templates Lactam Formation in Water”

Mosca, S.; Yu, Y.; Gavette, J. V.; Zhang, K.-D.; Rebek, J.*, Jr. J. Am. Chem. Soc. 2015, 137, 14582-14585. DOI: 10.1021/jacs.5b10028 (アイキャッチ画像は本論文より引用)

問題設定

大環状化反応は有機化学における基本反応の一つであるが、中員環化は渡環反発のためとくに難しくなり、大員環化は反応点が近接化しづらいためこれも難しい。そのため、反応効率は基質が備える配座規制(不飽和結合数や縮環骨格)に大きく依存する。そのような構造要素を含まない場合には、高希釈条件をもちいてオリゴマー形成を抑制するか、金属イオンの鋳型効果を活用しなくてはならないケースが多い。また、マクロラクタム化やマクロラクトン化といった脱水縮合反応については、当然ながら水中での実施は困難を極める。

技術や手法のキモ

Rebekらはこの課題に対し、長年研究対象としてきた独自ホスト分子・水溶性キャビタンド[1]を用いることで、全く新しい問題解決策の提案を試みた。すなわち、水溶性キャビタンドにω-アミノ酸を屈曲配座の形で取り込ませ、反応末端を強制的に近接させることで水中でのマクロラクタム化を試みた

キャビタンド1では親水性ウレア構造が開口部を囲む形で水素結合し、さらに二量化することで疎水性化合物を取り込める空間を創り出している。大きなサイズの炭化水素分子については、図の様に屈曲配座で取り込まれることも分かっている[1b]。

今回の研究では過去に開発されたピリジニウム置換型キャビタンド1ではなく、新たに用意したイミダゾリウム置換型キャビタンド2を用いて研究を行なっている。1よりも2のほうがω-アミノ酸を取り込む効率が高く、また水溶性に優れる(up to 17 mM)ためである。

論文[1]より引用・改変

主張の有効性検証

ω-アミノ酸の脂肪鎖部分は、疎水性相互作用によってキャビタンド凹面に張り付き、屈曲配座をとる。結果として、カルボン酸・アミン部位は開口部に近接して位置することになる。今回の実験では、特にC11とC12のものが取り込まれやすいことが分かったので、ω-アミノウンデカン酸およびω-アミノドデカン酸を用いている。複合体に、縮合剤EDCと水溶性活性化剤sulfo-NHSを混合し、環化反応の様子を1H NMR(D2O)でモニタリングした。

冒頭論文より引用

ω-アミノドデカン酸(3, SM)とキャビタンド12の混合NMRチャートを以下に示す。キャビタンドのメチンピークがおよそ5.6 ppm付近に、取り込まれたアミノ酸の脂肪鎖が高磁場(0 ppm以下)に登場するため、基質の取り込まれている様子が分かる。競合実験によって2のほうが基質を良く取り込み、強塩基NaODの添加に対しても、2のほうが取り込みに影響を受けにくいことも分かる。

冒頭論文より引用・改変

この脂肪鎖の部分を拡大して、ラクタム化試薬(EDC)添加に伴うNMR変化をモニターした。EDCの添加に従って原料3のピークが減り、生成物4に特徴的なピークが増えていくことが分かる。キャビタンド無しではオリゴマー生成が優先してしまい、効率が悪い。

冒頭論文より引用・改変

結果として、キャビタンド2の存在によって環化効率が2.8倍向上していると計算された。ω-アミノウンデカン酸の場合も同様の実験を行なっており、環化効率が4.1倍になることを示している。

また-アミノウンデカン酸塩酸塩のp-ニトロフェニルエステルを調製し、キャビタンド2の存在下でNaODを加えて環化を行なわせると、望む大環状ラクタムが得られることも確かめている。この場合は、キャビタンド無しの高希釈条件では全く目的物が得られない。

議論すべき点

  • 論文中にも明記されているが、当量もしくは過剰のキャビタンド化合物が必要になってしまうことが課題。シャペロンのように触媒的に用いるには、環化をトリガーにしてホスト-ゲスト親和性を下げる工夫が必要になる。本反応はカルボン酸+アミン→アミドの変換であるため、分子の極性自体は下がるはずだが、動的な分子交換には不十分な差異しか出ないのだろう。たとえばキャビタンドのウレア部位をより高極性に(グアニジンなど)変えたものを作って、極性相互作用の差異を明確化することができれば達成されるかも知れない。
  • 基質拡張の後続研究として、ジアミン、ジイソシアネートを用いた大環状化反応が報告されている[2]。ほとんど同じコンセプトであるため、今回は割愛。

未解決問題へのアプローチ

  • 触媒化を達成する目的で、超分子カプセルの中に基質を取り込み、confined space中で触媒反応を行なった各種事例は参考にしたい[3]。電荷を持つ原料から反応によって電荷を消失させるなど、基質・反応形式に工夫を凝らしている印象がある。

参考文献

  1. (a) Zhang, K. D.; Ajami, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2013, 135, 18064. DOI: 10.1021/ja410644p (b) Gavette, J. V.; Zhang, K.-D.; Ajami, D.; Rebek, J., Jr. Org. Biomol. Chem. 2014, 12, 6561. doi:10.1039/C4OB01032A (c) Zhang, K.-D.; Ajami, D.; Gavette, J. V.; Rebek, J., Jr. Chem. Commun. 2014, 50, 4895. doi:10.1039/C4CC01643B
  2. (a) Wu, N.-W.; Rebek, J., Jr. J. Am. Chem. Soc. 2016, 138, 7512. DOI: 10.1021/jacs.6b04278 (b) Shi, Q.; Masseroni, D.; Rebek, J., Jr. J. Am. Chem. Soc. 2016, 138, 10846. DOI: 10.1021/jacs.6b06950
  3. (a) Leenders, S. H. A. M.; Gramage,-Doria, R.; de Bruin, B.; Reek, J. N. H. Chem. Soc. Rev. 2015, 44, 433. doi:10.1039/C4CS00192C (b) Vardhan, H.; Verpoort, F. Adv. Synth. Catal. 2015, 357, 1351. doi:10.1002/adsc.201400778 (c) Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chem. Rev. 2015, 115, 3012. DOI: 10.1021/cr4001226
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 触媒なの? ?自殺する酵素?
  2. がんをスナイプするフェロセン誘導体
  3. 未来の車は燃料電池車でも電気自動車でもなくアンモニア車に?
  4. 合成生物学を疾病治療に応用する
  5. ビニル位炭素-水素結合への形式的分子内カルベン挿入
  6. 複雑天然物Communesinの新規類縁体、遺伝子破壊実験により…
  7. U≡N結合、合成さる
  8. 鉄錯体による触媒的窒素固定のおはなし-2

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光化学スモッグ注意報が発令されました
  2. 原子一個の電気陰性度を測った! ―化学結合の本質に迫る―
  3. 高校生の「化学五輪」、2010年は日本で開催
  4. スイス医薬大手のロシュ、「タミフル」の生産能力を増強へ
  5. 【PR】Twitter、はじめました
  6. エッシェンモーザー・タナベ開裂反応 Eschenmoser-Tanabe Fragmentation
  7. シュワルツ試薬 Schwartz’s Reagent
  8. アリルC(Sp3)-H結合の直接的ヘテロアリール化
  9. 論文執筆ABC
  10. 近況報告PartI

関連商品

注目情報

注目情報

最新記事

自己修復性高分子研究を異種架橋高分子の革新的接着に展開

第257回のスポットライトリサーチは、東京工業大学 大学院物質理工学院・鶴岡あゆ子さんにお願いしまし…

コロナウイルス関連記事 まとめ

新型コロナウイルスの影響で、キャンパスが閉鎖となる大学も増えてきていますね。私の周りでは、コロナウイ…

機械的力で Cu(I) 錯体の発光強度を制御する

第256回のスポットライトリサーチは、沖縄科学技術大学院大学(OIST)・錯体化学触媒ユニット 狩俣…

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

研究助成金&海外留学補助金募集:公益財団法人アステラス病態代謝研究会

令和2年度はじまりました。とはいってもほとんどの大学講義開始は延期、講義もオンライン化が進み、いつも…

ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基触媒の創製

第255回のスポットライトリサーチは、東北大学大学院理学研究科 化学専攻・石川 奨さんにお願いしまし…

Chem-Station Twitter

PAGE TOP