[スポンサーリンク]

スポットライトリサーチ

生体内での細胞選択的治療を可能とする糖鎖付加人工金属酵素

[スポンサーリンク]

第217回のスポットライトリサーチは、理化学研究所・Kenward Vong 博士にお願いしました。

Vongさんの所属する田中克典研究室では、生体内で化合物を人工合成し治療に繋げるという壮大な目標を見据えた「生体内合成化学治療」研究が繰り広げられています。以前のスポットライトリサーチでもその一端を紹介させて頂いています(参考:糖鎖クラスター修飾で分子の生体内挙動を制御する)。

今回の成果は、独自開発した糖鎖修飾型メタロエンザイムを用いることで、細胞環境で抗ガン剤を合成してがん細胞を殺傷できることを示したものです。筆者も何度か学会で拝聴させて頂きましたが、非常に巧みな設計が随所に見られ、系の美しさに感動を覚えました。成果はNature Catalysis誌原著論文およびプレスリリースとして公開されています。原著論文では3人のco-first authorsが示されていますが、今回は代表してVongさんに英語インタビューをお願いしました。

“Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes”
Eda, S.; Nasibullin, I.; Vong, K.; Kudo, N.; Yoshida, M.; Kurbangalieva, M.; Tanaka, K.  Nat. Catal. 2019, doi:10.1038/s41929-019-0317-4

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

Reactions catalyzed by transition metals, like ruthenium, can be highly chemoselective. As such, it would be highly beneficial to use them inside of biological systems. Unfortunately, metal quenching by biometabolites (ex/ glutathione) presents itself as a huge obstacle. To protect a ruthenium catalyst while also allowing access to desired starting materials, this work has taken advantage of the hydrophobic binding pocket of human serum albumin (HSA). Due to the physiologically charged nature of the HSA surface near the binding pocket, glutathione is prevented from interacting with the metal.


Using this system, we than devised the construction of glycosylated artificial metalloenzymes (GArM). In this manner, these ruthenium-bound protein complexes can be selectively shuttled to the surface of targeted cancer cells, where they can catalyze the conversion of a prodrug into an active drug (see top figure).

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

The ability of HSA to protect a bound metal catalyst from glutathione was largely an unexpected result. As such, most of the experimental design went to devising experiments to prove this, as well as to test its limitations and substrate scope. We then went about to research and design anticancer prodrugs that not only could be converted to an active drug via ring-closing metathesis, but that could also bind to the albumin binding pocket with high specificity.

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

Since we are dealing with a protein binding pocket, one of the greatest challenges we faced and overcame was to design and identify substrates that could be used with our albumin artificial metalloenzymes. Although we are still far away from mimicking the catalytic activity of natural enzymes, we have made significant progress into understanding the types of substrates that can and cannot be used.

Q4. 将来は化学とどう関わっていきたいですか?

To increase therapeutic applicability, our future goals will be to test our system with different metals (ex/ Au, Pd, etc), increase the strength of metal binding, and to design prodrugs with stronger and more selective reactivity.

Q5. 最後に、読者の皆さんにメッセージをお願いします。

Thank you for reading! And please excuse me for writing this blog post in English.

研究者の略歴

[名前] Kenward Vong
[所属] 理化学研究所 基礎科学特別研究員
[研究テーマ] Biocatalysis
2007.04 Queen’s University, Department of Biochemistry, B.Sc. (Hons)
2013.11 McGill University, Department of Chemistry, Ph.D (Karine Auclair lab)
2013.12–現在 理化学研究所田中生体機能合成化学研究室 基礎科学特別研究員

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「電子の動きを観る」ーマックスプランク研究所・ミュンヘン大学・K…
  2. マシンラーニングを用いて光スイッチング分子をデザイン!
  3. 地方の光る化学商社~長瀬産業殿~
  4. 大量合成も可能なシビれる1,2-ジアミン合成法
  5. ワンチップ顕微鏡AminoMEを買ってみました
  6. 光触媒ーパラジウム協働系によるアミンのC-Hアリル化反応
  7. 第23回次世代を担う有機化学シンポジウム
  8. 5/15(水)Zoom開催 【旭化成 人事担当者が語る!】202…

注目情報

ピックアップ記事

  1. 研究倫理問題について学んでおこう
  2. (+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成
  3. コーラから発がん物質?
  4. 光触媒-ニッケル協働系によるシステイン含有ペプチドのS-アリール化
  5. 薬学会一般シンポジウム『異分野融合で切り込む!膜タンパク質の世界』
  6. ウォルフ・キシュナー還元 Wolff-Kishner Reduction
  7. アメリカ大学院留学:卒業後の進路とインダストリー就活(3)
  8. 眞鍋 史乃 Manabe Shino
  9. 森田浩介 Kosuke Morita
  10. 大学院生が博士候補生になるまでの道のり【アメリカで Ph.D. を取る –Qualification Exam の巻 前編】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP