[スポンサーリンク]

スポットライトリサーチ

生体内での細胞選択的治療を可能とする糖鎖付加人工金属酵素

[スポンサーリンク]

第217回のスポットライトリサーチは、理化学研究所・Kenward Vong 博士にお願いしました。

Vongさんの所属する田中克典研究室では、生体内で化合物を人工合成し治療に繋げるという壮大な目標を見据えた「生体内合成化学治療」研究が繰り広げられています。以前のスポットライトリサーチでもその一端を紹介させて頂いています(参考:糖鎖クラスター修飾で分子の生体内挙動を制御する)。

今回の成果は、独自開発した糖鎖修飾型メタロエンザイムを用いることで、細胞環境で抗ガン剤を合成してがん細胞を殺傷できることを示したものです。筆者も何度か学会で拝聴させて頂きましたが、非常に巧みな設計が随所に見られ、系の美しさに感動を覚えました。成果はNature Catalysis誌原著論文およびプレスリリースとして公開されています。原著論文では3人のco-first authorsが示されていますが、今回は代表してVongさんに英語インタビューをお願いしました。

“Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes”
Eda, S.; Nasibullin, I.; Vong, K.; Kudo, N.; Yoshida, M.; Kurbangalieva, M.; Tanaka, K.  Nat. Catal. 2019, doi:10.1038/s41929-019-0317-4

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

Reactions catalyzed by transition metals, like ruthenium, can be highly chemoselective. As such, it would be highly beneficial to use them inside of biological systems. Unfortunately, metal quenching by biometabolites (ex/ glutathione) presents itself as a huge obstacle. To protect a ruthenium catalyst while also allowing access to desired starting materials, this work has taken advantage of the hydrophobic binding pocket of human serum albumin (HSA). Due to the physiologically charged nature of the HSA surface near the binding pocket, glutathione is prevented from interacting with the metal.


Using this system, we than devised the construction of glycosylated artificial metalloenzymes (GArM). In this manner, these ruthenium-bound protein complexes can be selectively shuttled to the surface of targeted cancer cells, where they can catalyze the conversion of a prodrug into an active drug (see top figure).

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

The ability of HSA to protect a bound metal catalyst from glutathione was largely an unexpected result. As such, most of the experimental design went to devising experiments to prove this, as well as to test its limitations and substrate scope. We then went about to research and design anticancer prodrugs that not only could be converted to an active drug via ring-closing metathesis, but that could also bind to the albumin binding pocket with high specificity.

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

Since we are dealing with a protein binding pocket, one of the greatest challenges we faced and overcame was to design and identify substrates that could be used with our albumin artificial metalloenzymes. Although we are still far away from mimicking the catalytic activity of natural enzymes, we have made significant progress into understanding the types of substrates that can and cannot be used.

Q4. 将来は化学とどう関わっていきたいですか?

To increase therapeutic applicability, our future goals will be to test our system with different metals (ex/ Au, Pd, etc), increase the strength of metal binding, and to design prodrugs with stronger and more selective reactivity.

Q5. 最後に、読者の皆さんにメッセージをお願いします。

Thank you for reading! And please excuse me for writing this blog post in English.

研究者の略歴

[名前] Kenward Vong
[所属] 理化学研究所 基礎科学特別研究員
[研究テーマ] Biocatalysis
2007.04 Queen’s University, Department of Biochemistry, B.Sc. (Hons)
2013.11 McGill University, Department of Chemistry, Ph.D (Karine Auclair lab)
2013.12–現在 理化学研究所田中生体機能合成化学研究室 基礎科学特別研究員

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 投票!2013年ノーベル化学賞は誰の手に??
  2. 光触媒により脱炭酸反応における反応中間体の精密制御に成功!
  3. 「世界最小の元素周期表」が登場!?
  4. 「オープンソース・ラボウェア」が変える科学の未来
  5. Brønsted酸触媒とヒドロシランによるシラFriedel-C…
  6. ルイスペア形成を利用した電気化学発光の増強
  7. Appel反応を用いるホスフィンの不斉酸化
  8. 酵素の分子個性のダイバーシティは酵素進化のバロメーターとなる

注目情報

ピックアップ記事

  1. 光レドックス触媒と有機分子触媒の協同作用
  2. 立体特異的アジリジン化:人名反応エポキシ化の窒素バージョン
  3. ポケットにいれて持ち運べる高分子型水素キャリアの開発
  4. 平田義正メモリアルレクチャー賞(平田賞)
  5. 有機合成化学協会誌2023年5月号:特集号「日本の誇るハロゲン資源: ハロゲンの反応と機能」
  6. 第20回次世代を担う有機化学シンポジウム
  7. ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発
  8. Jエナジーと三菱化が鹿島製油所内に石化製品生産設備を700億円で新設
  9. ウォルフガング-クローティル Wolfgang Kroutil
  10. 金属から出る光の色を利用し、食中毒の原因菌を迅速かつ同時に識別することに成功!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP