[スポンサーリンク]

一般的な話題

この輪っか状の分子パないの!

[スポンサーリンク]

GREEN00461.PNG

某ドーナツ屋の100円セール(2012/03/20~2012/03/25)に行きそびれてしまったので、輪っかの話でもしようかと思います。天然のタンパク質から、人工の高分子材料まで、輪っかでつながる魅力は、ぐんぐん進化しています。このキーワードはカテナンです。

ドーナツの穴は熱が中まで通りやすくするために空けられたと言われています。このドーナツのように、真ん中を丸く抜いて輪にしたかたちを、トーラスと呼びます。とにかく輪っかがあればよいので、よじれた輪ゴムでも、持ち手のあるティーカップでも、ドーナツと相が同じトーラスです。

トーラスと相の同じ輪っかが、(catena)のようにつながった分子を、カテナン(catenane)と呼びます。最初[5]は輪がからみあう偶然を期待して合成されたため収率は低く、フラスコでは間に合わず浴槽で反応を仕込んだという逸話が語り継がれています。その後、金属錯体や自己組織化などの観点から工夫された合成法が確立され、当時と比べれば収率は格段に改善されました。

 

GREEN00466.PNG

Google翻訳の出力結果を改変

 

  •  天然のカテナン分子

自然界にカテナンはないのかというと実はあって、例えば古細菌のなかま(Pyrobaculum aerophilum )で見られるクエン酸合成酵素が該当します[6]。クエン酸合成酵素は、ヒトをはじめ他の生き物では単量体として存在する一方、この古細菌ではジスルフィド結合で2つのペプチド鎖がカテナンとなって組み合わさり二量体として存在します。このカテナンタンパク質の変性温度は、わたしたちのクエン酸合成酵素の変性温度よりも高く、この古細菌が高熱の極限環境に適応するために進化した結果であると考えられています。鎖になって立体構造がロックされているため、熱変性しにくいのでしょう。さすがこの古細菌は100℃超の熱水温泉に住む変わりものだけあって、まさかそこまでやるのかとうなりたくなるほど、環境への適応も徹底しています。

GREEN2013wa1.png

タンパク質の立体構造データはPDB(Protein Data Bank)より取得

オレンジ色部分がジスルフィド結合

 

また、古細菌のクエン酸合成酵素以外にもカテナン構造は知られています。ウイルスの殻(capsid)を構成するタンパク質[7]や、細菌の環状DNAが複製される過程でも、カテナン構造は登場します。

 

  • 人工のカテナン分子

自然に負けず、人工の化合物では、より複雑な構造のカテナンが合成されています。五輪旗のオリンピックシンボルのように5つの輪が連続したカテナン[1]、2ヶ所でがっちりとロックされたカテナン[2]、ボロミアンリングのように3つの輪が交差したカテナン[3]、焼き菓子のプレッツェルのように1分子で輪が交差したカテナン[4]などなど、カテナンのなかまにはユニークな構造がテンコ盛りです。

GREEN00463.PNG

ユニークな超分子のかずかず

それぞれ論文[1], [2], [3], [4]で合成

 眺めているだけでも、華麗で荘厳な構造に、時間も忘れて見入ってしまいそうです。単にユニークな構造として終わるのではなく、ゆくゆくはカテナンのような超分子が、ナノデバイスとして応用される日も近いかもしれません。

 

実際に、輪っかを上手く活用した応用例としては、トポロジカルゲル[8]が知られています。(ただし正確にはカテナンというよりは輪を串刺しにしたロタキサンのなかまです)滑車のように輪が高分子のひもをつなぐことで、従来とは桁違いの柔軟さを材料に与えます。超分子ネットワーク構造により柔軟さに優れたこの技術は、すでに日産がスクラッチシールドという名称の自己復元型塗装として商標登録しており、自動車携帯電話の外装に使用されています。2012年1月には、スクラッチシールド加工を施したiPhone用新型ケースの開発が発表されています。

GREEN00464.PNG

論文[8]より

 

輪でつながりあうことは、バラバラに壊れることなく柔軟さを保つ上で、従来の限界を凌駕した新たな可能性をもたらします。古細菌クエン酸合成酵素の場合、タンパク質のフレキシブルさを保ち触媒活性を失わないまま、変性を抑え卓越した耐熱能力を獲得していました。スクラッチシールドの場合、擦り傷で凹んでもネットワーク構造が断絶されないがために、従来ありえなかった自己復元が可能になりました。このように、輪っか状の分子には、まだまだハンパない可能性が秘めているかもしれません。

円環の先にあなたはどのような希望をつなげますか?

 


  • 参考ウェブページ

超分子ネットワークの実用化

http://www.molle.k.u-tokyo.ac.jp/research/supramolecule.html   . 

スクラッチシールド|日産|技術開発の取り組み

http://www.nissan-global.com/JP/TECHNOLOGY/OVERVIEW/scratch.html   . 

日産、自己復元型塗装「スクラッチシールド」を施した、iPhone用ケースを開発中!(2012. 01. 17)

http://web.meet-i.com/news/?p=105406  .    

 


  • 参考論文

[1] 5つの輪が連続したオリンピアダンの合成

"Olympiadane." Amabilino et al. Angew. Chem. Int. Ed. 1994 DOI: 10.1002/ange.19941061212

[2] 自己組織化で作る2カ所でつながりあったカテナン

"Spontaneous assembly of ten components into two interlocked, identical coordination cages" Makoto Fujita et al. Nature 1999 DOI: 10.1038/21861

[3] 分子ボロミアンリングの合成

"Molecular Borromean Rings" Kelly S. Chichak et al. Science 2004 DOI: 10.1126/science.1096914

[4] プレツェランとその相同な環状カテナンの合成

“Donor–Acceptor Pretzelanes and a Cyclic Bis[2]catenane Homologue” Yi Liu Dr et al. Angew. Chem. Int. Ed. 2005 DOI: 10.1002/anie.200500041

[5] 最初のカテナンの合成

"The Preparation of Interlocking Rings: A Catenane" Wasserman et al. J. Am. Chem. Soc. 1960 DOI: 10.1021/ja01501a082

[6] 好熱古細菌のクエン酸合成酵素はカテナンタンパク質だった

"Discovery of a Thermophilic Protein Complex Stabilized by Topologically Interlinked Chains" Daniel R. Boutz et al. J. Mol. Biol. 2007 DOI: 10.1016/j.jmb.2007.02.078

[7] ウイルスの殻に見られるカテナン構造

"Protein Chainmail: Catenated Protein in Viral Capsids" Robert L. Duda Cell 1998 DOI: 10.1016/S0092-8674(00)81221-0

[8] トポロジカルゲルの合成

"The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links" Yasushi Okumura and Kohzo Ito Adv. Mater. 2001 DOI: 10.1002/1521-4095(200104) 

 


  • 関連書籍

     ミスタードーナツ物語―人を愛し、人がいきる心の経営

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. ルドルフ・クラウジウスのこと① エントロピー150周年を祝って
  2. 中性ケイ素触媒でヒドロシリル化
  3. メーカーで反応性が違う?パラジウムカーボンの反応活性
  4. 科学カレンダー:学会情報に関するお役立ちサイト
  5. 【日産化学 21卒】START your chemi-story…
  6. 円偏光スピンLEDの創製
  7. マテリアルズ・インフォマティクスの推進成功事例セミナー
  8. 虫歯とフッ素のお話② ~歯磨き粉のフッ素~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第47回天然物化学談話会に行ってきました
  2. 映画007シリーズで登場する毒たち
  3. ジルコノセン触媒による第一級アミドとアミンのトランスアミド化反応
  4. 免疫不応答の抗原抗体反応を利用できるハプテン標識化試薬
  5. カーボンナノペーパー開発 信州大、ナノテク新素材
  6. ケミストリ・ソングス【Part 2】
  7. 環サイズを選択できるジアミノ化
  8. 結晶格子の柔軟性制御によって水に強い有機半導体をつくる
  9. メカノクロミズムの空間分解能の定量的測定に成功
  10. 計算化学:DFT計算って何?Part II

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

実験条件検討・最適化特化サービス miHubのメジャーアップデートのご紹介 -実験点検討と試行錯誤プラットフォーム-

開催日:2023/12/13 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

カルボン酸のb位C(sp3)–H結合を直接臭素化できるイソキノリン配位子が開発された。イソキノリンに…

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP