[スポンサーリンク]

一般的な話題

この輪っか状の分子パないの!

[スポンサーリンク]

GREEN00461.PNG

某ドーナツ屋の100円セール(2012/03/20~2012/03/25)に行きそびれてしまったので、輪っかの話でもしようかと思います。天然のタンパク質から、人工の高分子材料まで、輪っかでつながる魅力は、ぐんぐん進化しています。このキーワードはカテナンです。

ドーナツの穴は熱が中まで通りやすくするために空けられたと言われています。このドーナツのように、真ん中を丸く抜いて輪にしたかたちを、トーラスと呼びます。とにかく輪っかがあればよいので、よじれた輪ゴムでも、持ち手のあるティーカップでも、ドーナツと相が同じトーラスです。

トーラスと相の同じ輪っかが、(catena)のようにつながった分子を、カテナン(catenane)と呼びます。最初[5]は輪がからみあう偶然を期待して合成されたため収率は低く、フラスコでは間に合わず浴槽で反応を仕込んだという逸話が語り継がれています。その後、金属錯体や自己組織化などの観点から工夫された合成法が確立され、当時と比べれば収率は格段に改善されました。

 

GREEN00466.PNG

Google翻訳の出力結果を改変

 

  •  天然のカテナン分子

自然界にカテナンはないのかというと実はあって、例えば古細菌のなかま(Pyrobaculum aerophilum )で見られるクエン酸合成酵素が該当します[6]。クエン酸合成酵素は、ヒトをはじめ他の生き物では単量体として存在する一方、この古細菌ではジスルフィド結合で2つのペプチド鎖がカテナンとなって組み合わさり二量体として存在します。このカテナンタンパク質の変性温度は、わたしたちのクエン酸合成酵素の変性温度よりも高く、この古細菌が高熱の極限環境に適応するために進化した結果であると考えられています。鎖になって立体構造がロックされているため、熱変性しにくいのでしょう。さすがこの古細菌は100℃超の熱水温泉に住む変わりものだけあって、まさかそこまでやるのかとうなりたくなるほど、環境への適応も徹底しています。

GREEN2013wa1.png

タンパク質の立体構造データはPDB(Protein Data Bank)より取得

オレンジ色部分がジスルフィド結合

 

また、古細菌のクエン酸合成酵素以外にもカテナン構造は知られています。ウイルスの殻(capsid)を構成するタンパク質[7]や、細菌の環状DNAが複製される過程でも、カテナン構造は登場します。

 

  • 人工のカテナン分子

自然に負けず、人工の化合物では、より複雑な構造のカテナンが合成されています。五輪旗のオリンピックシンボルのように5つの輪が連続したカテナン[1]、2ヶ所でがっちりとロックされたカテナン[2]、ボロミアンリングのように3つの輪が交差したカテナン[3]、焼き菓子のプレッツェルのように1分子で輪が交差したカテナン[4]などなど、カテナンのなかまにはユニークな構造がテンコ盛りです。

GREEN00463.PNG

ユニークな超分子のかずかず

それぞれ論文[1], [2], [3], [4]で合成

 眺めているだけでも、華麗で荘厳な構造に、時間も忘れて見入ってしまいそうです。単にユニークな構造として終わるのではなく、ゆくゆくはカテナンのような超分子が、ナノデバイスとして応用される日も近いかもしれません。

 

実際に、輪っかを上手く活用した応用例としては、トポロジカルゲル[8]が知られています。(ただし正確にはカテナンというよりは輪を串刺しにしたロタキサンのなかまです)滑車のように輪が高分子のひもをつなぐことで、従来とは桁違いの柔軟さを材料に与えます。超分子ネットワーク構造により柔軟さに優れたこの技術は、すでに日産がスクラッチシールドという名称の自己復元型塗装として商標登録しており、自動車携帯電話の外装に使用されています。2012年1月には、スクラッチシールド加工を施したiPhone用新型ケースの開発が発表されています。

GREEN00464.PNG

論文[8]より

 

輪でつながりあうことは、バラバラに壊れることなく柔軟さを保つ上で、従来の限界を凌駕した新たな可能性をもたらします。古細菌クエン酸合成酵素の場合、タンパク質のフレキシブルさを保ち触媒活性を失わないまま、変性を抑え卓越した耐熱能力を獲得していました。スクラッチシールドの場合、擦り傷で凹んでもネットワーク構造が断絶されないがために、従来ありえなかった自己復元が可能になりました。このように、輪っか状の分子には、まだまだハンパない可能性が秘めているかもしれません。

円環の先にあなたはどのような希望をつなげますか?

 


  • 参考ウェブページ

超分子ネットワークの実用化

http://www.molle.k.u-tokyo.ac.jp/research/supramolecule.html   . 

スクラッチシールド|日産|技術開発の取り組み

http://www.nissan-global.com/JP/TECHNOLOGY/OVERVIEW/scratch.html   . 

日産、自己復元型塗装「スクラッチシールド」を施した、iPhone用ケースを開発中!(2012. 01. 17)

http://web.meet-i.com/news/?p=105406  .    

 


  • 参考論文

[1] 5つの輪が連続したオリンピアダンの合成

"Olympiadane." Amabilino et al. Angew. Chem. Int. Ed. 1994 DOI: 10.1002/ange.19941061212

[2] 自己組織化で作る2カ所でつながりあったカテナン

"Spontaneous assembly of ten components into two interlocked, identical coordination cages" Makoto Fujita et al. Nature 1999 DOI: 10.1038/21861

[3] 分子ボロミアンリングの合成

"Molecular Borromean Rings" Kelly S. Chichak et al. Science 2004 DOI: 10.1126/science.1096914

[4] プレツェランとその相同な環状カテナンの合成

“Donor–Acceptor Pretzelanes and a Cyclic Bis[2]catenane Homologue” Yi Liu Dr et al. Angew. Chem. Int. Ed. 2005 DOI: 10.1002/anie.200500041

[5] 最初のカテナンの合成

"The Preparation of Interlocking Rings: A Catenane" Wasserman et al. J. Am. Chem. Soc. 1960 DOI: 10.1021/ja01501a082

[6] 好熱古細菌のクエン酸合成酵素はカテナンタンパク質だった

"Discovery of a Thermophilic Protein Complex Stabilized by Topologically Interlinked Chains" Daniel R. Boutz et al. J. Mol. Biol. 2007 DOI: 10.1016/j.jmb.2007.02.078

[7] ウイルスの殻に見られるカテナン構造

"Protein Chainmail: Catenated Protein in Viral Capsids" Robert L. Duda Cell 1998 DOI: 10.1016/S0092-8674(00)81221-0

[8] トポロジカルゲルの合成

"The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links" Yasushi Okumura and Kohzo Ito Adv. Mater. 2001 DOI: 10.1002/1521-4095(200104) 

 


  • 関連書籍

     ミスタードーナツ物語―人を愛し、人がいきる心の経営

Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 動的な軸不斉を有する大環状ホスト分子
  2. ストックホルム国際青年科学セミナー参加学生を募集開始 ノーベル賞…
  3. 配位子保護金属クラスターを用いた近赤外―可視光変換
  4. ケムステ新コンテンツ「化学地球儀」
  5. 小スケール反応での注意点 失敗しないための処方箋
  6. 海外機関に訪問し、英語講演にチャレンジ!~② アポを取ってみよう…
  7. C–H活性化反応ーChemical Times特集より
  8. 有機合成化学協会誌7月号:ランドリン全合成・分子間interru…

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2017年7月号:有機ヘテロ化合物・タンパク質作用面認識分子・Lossen転位・複素環合成
  2. 有機化学1000本ノック【命名法編】【立体化学編】
  3. 第3回ITbM国際シンポジウム(ISTbM-3)、第11回平田アワード、第1回岡崎アワード
  4. アキラル色素分子にキラル光学特性を付与するミセルを開発
  5. 「サガミオリジナル001」、今月から販売再開 相模ゴム
  6. 三共、第一製薬が統合へ 売上高9000億円規模
  7. C-H結合活性化を経るラクトンの不斉合成
  8. 研究室の大掃除マニュアル
  9. 出張増の強い味方!「エクスプレス予約」
  10. 【消臭リキ】マッチでトイレで消臭トライ 

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP