[スポンサーリンク]

化学者のつぶやき

ルイス酸添加で可視光レドックス触媒の機構をスイッチする

[スポンサーリンク]

スイス連邦工科大学チューリヒ校・J.W.Bodeらは、光触媒とルイス酸を組み合わせることで、Ir光触媒の酸化的クエンチと還元的クエンチのスイッチに成功した。このシステムにより、Bodeらが近年開発しているSLAP法(silicon amine protocol)によって合成できる飽和N-ヘテロ環の種類を拡張した。

“Lewis Acid Induced Toggle from Ir (II) to Ir (IV) Pathways in Photocatalytic Reactions:Synthesis of Thiomorpholines and Thiazepanes from Aldehydes and SLAP Reagents”
Hsieh, S-H.; Bode, J. W.* ACS Cent. Sci. 2017, 3, 66. DOI: 10.1021/acscentsci.6b00334 (アイキャッチ画像は本論文より引用)

問題設定と解決した点

飽和含窒素複素環(N-ヘテロ環)は医薬品に広くみられる骨格であり、様々な誘導体を得るべく多数のグループが研究開発を行っている。従来の方法では、変換後の窒素保護基除去がしばしば困難だったり、条件が厳しいため適用範囲が狭かったりなど、多くの課題が残されていた。

Bodeらはこの問題解決にかねてより取り組み、SnAP試薬を開発している[1]。2016年には、同様の機構で進行し毒性も低いケイ素ベースのSLAP試薬の開発にも成功した[2]。本合成系ではSLAP試薬にIr可視光レドックス触媒とアルデヒドを共存させ、対応するさまざまな飽和N-ヘテロ環に単工程でアプローチ出来る(下図)。しかしながら光触媒の酸化還元電位に制約があるため、従来型プロトコルで合成可能な飽和N-ヘテロ環はピペラジン骨格に限られていた。

Bodeらは適切なルイス酸を反応系に加えることでこの制限を克服し、モルホリン・チオモルホリン骨格なども合成可能にした。ピペラジンの場合、必要なレドックスポテンシャルは、①シリルアミンの酸化:+0.65 V (vs SCE)、②N 中心ラジカルの還元:-1.5 V (vs SCE)であり、この酸化電位と比較的高い還元電位を満たす可視光レドックス触媒としてIr(ppy)2(dtbpy)PF6(E*ox = +0.66 V、Ered = -1.51 V (vs SCE))を用いていた。チオモルフォリンやモルフォリンを合成するには、より高い酸化力(+1.1 V (vs SCE)以上)が必要となる。

SLAP法による置換ピペラジン環の合成[2]

技術や手法の肝

ルイス酸を配位させることで基質の酸化還元電位を調節したことが最大のキモである。以前のSLAP条件[2]では、還元的クエンチ過程を経由していたが、ルイス酸の添加によって酸化的クエンチ過程を経る触媒サイクルに変わる(下図)。

冒頭論文より引用

すなわち、ルイス酸によってイミンが還元されやすくなるため、光励起されたIr触媒が試薬を酸化するより先にイミンを還元し、酸化力の高いIr(IV)を生成する(Ir(IV): Eox = +1.21 V, Ir(III)*: Eox = +0.66 V (vs SCE))。これによりピペラジン環以外の基質適用を可能にしている。また、N中心ラジカルカチオンの還元も、ルイス酸の配位によって容易になっている。

主張の有効性検証

①反応条件の最適化

SLAP法の標準条件(Ir(ppy)2(dtbpy)PF6 (1 mol%), MeCN, rt, blueLED)に対して添加剤を加える方針で検討している。Ir(III)*が還元剤として機能するような酸化剤(I2, Ph3C+BF4, benzoquinoneなど)を添加しても目的物は得られなかった。TMSOTf を1当量加えるだけでは目的物は得られなかったが、2当量加えたところ36%収率で目的物が得られた。種々ルイス酸を検討した結果、Bi(OTf)3が最適なルイス酸と同定された。電子供与性置換基を持つアルデヒドを用いた場合、Bi(OTf)3よりCu(OTf)2の方が良い結果を与えた。

first screeningの実用性を増すため、Bi(OTf)3を0.5当量、Cu(OTf)2を1.0当量添加する条件を最適条件として設定した。

②基質一般性の検討

脂肪族アルデヒド、かさ高いアルデヒドを用いた場合には低収率になる。ビストリメチルシリルSLAP試薬を用いた場合には、2,3-二置換生成物が得られる。7 員環(チアゼパン)合成にも拡張可能。最適条件ではヘテロアリールアルデヒドは用いることができなかったが、BF3添加による配位性窒素保護を経ることで適用可能になる。より酸化力の強い光触媒であるTPP・BF4(E*ox=2.02 V, Ered =-0.35 V (vs SCE))を用いると、モルフォリン型でも反応は進行する。

③反応機構に関する示唆

以下の実験事実が観測されている。

  1. 基質は励起光触媒をクエンチしない。
  2. ルイス酸は励起光触媒をクエンチする。
  3. ルイス酸によって活性化されたイミンは光触媒をクエンチする。

ゆえに触媒サイクルの開始はIr(III)*種によるルイス酸の還元か、ルイス酸によって活性化されたイミンのどちらかである。

議論すべき点

  • 可視光レドックス触媒反応を設計する際、光触媒の酸化力/還元力どちらかを上げようとするとどちらかが低下する問題に直面する。より強い酸化力が必要な系では使える反応剤が限定され出す(触媒回転させるために反応剤自体が強力な酸化力を持たねばならない)。ゆえに基質側の酸化還元電位を調節できる方法論は有用である。その問題解決にルイス酸添加という簡単な方法でアプローチし、成功した例と言える。

次に読むべき論文は?

  • ルイス酸と可視光レドックス触媒の組み合わせを成功させた最近の事例[3]

参考文献

  1. Luescher, M. U.; Geoghegan, K.; Nichols, P. L.; Bode, J. W. Aldrichim. Acta 2015, 48, 43–48. [PDF]
  2. Hsieh, S.-Y.; Bode, J. W. Org. Lett. 2016, 18, 2098. DOI: 10.1021/acs.orglett.6b00722
  3. Lee, K. N.; Lei, Z.; Ngai, M.-Y. J. Am. Chem. Soc. 2017, 139, 5003. DOI: 10.1021/jacs.7b01373

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. シグマトロピー転位によるキラルα-アリールカルボニルの合成法
  2. テトラセノマイシン類の全合成
  3. 摩訶不思議なルイス酸・トリス(ペンタフルオロフェニル)ボラン
  4. とある化学者の海外研究生活:アメリカ就職編
  5. 天然物界70年の謎に終止符
  6. 日本薬学会  第143年会 付設展示会ケムステキャンペーン Pa…
  7. 農工大で爆発事故発生―だが毎度のフォローアップは適切か?
  8. 採用面接で 「今年の日本化学会では発表をしますか?」と聞けば

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学を広く伝えるためにー多分野融合の可能性ー
  2. グリーンイノベーション基金事業でCO2などの燃料化と利用を推進―合成燃料や持続可能な航空燃料などの技術開発に着手―
  3. 聖なる牛の尿から金を発見!(?)
  4. 【PR】Twitter、はじめました
  5. 異なる“かたち”が共存するキメラ型超分子コポリマーを造る
  6. アルミニウム Aluminium 最も多い金属元素であり、一円玉やアルミホイルの原料
  7. 植物毒素の全合成と細胞死におけるオルガネラの現象発見
  8. 【書籍】10分間ミステリー
  9. 反応経路最適化ソフトウェアが新しくなった 「Reaction plus pro」
  10. 山西芳裕 Yoshihiro Yamanishi

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP