[スポンサーリンク]

化学者のつぶやき

JEOL RESONANCE「UltraCOOL プローブ」: 極低温で感度MAX! ②

[スポンサーリンク]

 

前回の記事で、株式会社JEOL RESONANCEの開発している「UlrraCOOLプローブ」を紹介するにあたり、基本知識について紹介させていただきました。例えば、NMRの利点と問題点、感度をあげるためのプローブの開発の試み、UltraCOOLプローブの名前の由来、極低温にするとどうして感度があがるのだろうか?などです。今回の記事では実際、UltraCOOLプローブの謎に迫っていきたいと思います。

S/N比と極低温プローブの環境

前回の記事で、極低温にすることで熱的なノイズを減少させてS(signal)/N(noise)比を高めることができるとお話しました。具体的には、極低温プローブでは、一般に検出コイルと信号増幅回路であるプリアンプをそれぞれ冷却します。これらの回路に使用される金属材料は、冷却されることによって電気抵抗が減少します(Q値の増大)。これと同時に熱的ノイズも減少されるため、極低温プローブの感度は、温度の逆数に比例することになります。S/N比を求める式は以下の通り。


cryo3.png

 

式からも明らかなように、極低温に冷却された検出回路は、感度を大幅に向上させます。検出回路の冷却は、冷凍機によって極低温に冷却されたHeガスを循環させることで実現されます。この際に検出回路のみが冷却され、試料は室温に保たれていなければなりません。極低温のコイルと室温の試料との温度差は300K以上に達しますが、それらの間は真空断熱層で熱的に分離されています。(下図)

cryo4.png

また、プローブ内部は断熱のために高真空に保たれている必要があります。極低温プローブは、高真空と極低温を発生させ、そのような過酷な環境下で動作させるため、かなり大掛かりな装置となります。


cryo5.png

一般的には、He冷凍機による冷却によって、室温の4倍から5倍程度の感度向上が達成されます。NMRにおける信号の積算は信号の強度増加と同時にノイズの増加もあるため、SN比は積算回数の1/2乗に比例することになります。従って、感度が4倍から5倍であれば、同じSN比のスペクトルを得るために必要な積算回数は1/16から1/25で良いことになります。これはとりもなおさず、測定時間を極端に短縮することができることを意味します。これまで数日かかっていた測定が数時間で完了するため、装置の運転効率を著しく向上させることが可能となります。

 

極低温で感度MAX!「UltraCOOLプローブ」

では、実際のUltraCOOLプローブをみてみましょう。といっても記事のトップに掲載されている画像がソレです。

UltraCOOLプローブは、極低温プローブの特長である超高感度測定だけでなく、ポリマーなどの分析に必要となる、安定した高温測定が可能です。運転中は閉鎖系での冷却によりHeを消費することはありません。長い実績のあるオートチューニング・マッチング機構も装備しているため、大がかりな装置ではありますが、一旦起動、冷却してしまえば、全ては通常の室温プローブとほとんど変わらない使用感で利用できます。

例えば、?13Cの感度向上に最適化されたプローブでは、室温プローブと比較して5倍以上の感度を達成(下図)し、測定時間を1/25以下に短縮します。


cryo6.png

13Cは、室温プローブでは積算を重ねないと信号が得られませんが、UltraCOOLプローブでは1 scanでほぼ全ての信号が確認できます。(下図)

cryo7.png

また、13C-13Cの結合を明らかにするINADEQUATE測定では、現実的な時間でほぼ全ての結合を検出することができています。(下図)正直普通のNMRではINADEQUATE測定は事実上不可能です。

cryo8.png

例えば、この試料では43時間で結果が得られていますが、同じ測定を室温プローブでおこなった場合、25倍の1075時間に及ぶ積算が必要になります。45日間の積算はまったく現実的ではありません。

さらに、UltraCOOLプローブは、150℃までの高温測定を安定して実行することができます。150℃での測定では、近傍にあるコイルと試料の温度差が400℃を越えますが、長時間に渡る測定でも安定して検出が可能です。

 

おわりに

筆者自身これを体験できるのはあと半月先になりますが、これまで学生時や以前の職場でブルカー社のクライオプローブを使ってきました。正直普通のNMRとは全く別物です。勘違いしないでいただきたいのは、操作は全く同じ普通のNMRです。感度が圧倒的に異なり、1mgほどしかない複雑な骨格を有する化合物でも1時間ほどで非常にきれいな13CNMR測定ができました。このプローブは13Cの感度向上に特化していますが、1H-NMRにおいても圧倒的な感度が得られます。普通のNMRではどんなに積算してもノイズしかみられないごく少量サンプルでも、積算を重ねると数mgあるようなきれいなNMRスペクトルが得られました。副生成物や極少量のサンプルの構造決定に大変威力を発揮すると期待しています。

問題は価格。

このプローブ自体が通常のNMRマシンと同じ程の価格であること。600MHzのNMRとUltraCOOLプローブを導入するとなると具体的な価格はいえませんが、値引きを考慮しても普通の予算では厳しいです。さらには、極低温を維持するための寒剤や電気代がかさむことです。昔に比べたら良くなったというらしいですが、年間500万近くかかります。これは相当大きな予算を抱えていないと運用できないかもしれません。

とはいえど、使用者の立場から言えば、感度が高いということは測定時間も短くてよく、多くの研究者が使っても問題ありません。特に溶解度の低い化合物や四級炭素ばかりの化合物でNMR測定がまともに出来なかった研究を加速する、さらには新しい化学を創出する可能性も大いに考えられます。そんな夢のプローブ、ぜひ使ってみませんか?

 

参考サイト

本記事はJEOL RESONANCE社から寄稿いただいた文章に加筆したものです。

関連書籍

[amazonjs asin=”4062803038″ locale=”JP” title=”よくある質問 NMRの基本 (よくある質問シリーズ)”][amazonjs asin=”4781912958″ locale=”JP” title=”磁気共鳴‐NMR―核スピンの分光学 (新・物質科学ライブラリ)”][amazonjs asin=”4759811931″ locale=”JP” title=”有機化学のためのスペクトル解析法-UV、IR、NMR、MSの解説と演習”][amazonjs asin=”480790633X” locale=”JP” title=”有機化合物のスペクトルによる同定法―MS,IR,NMRの併用”]

 

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. MIDAボロネートを活用した(-)-ペリジニンの全合成
  2. 【日産化学 24卒/Zoomウェビナー配信!】START you…
  3. 有機反応を俯瞰する ー挿入的 [1,2] 転位
  4. 材料開発を効率化する、マテリアルズ・インフォマティクス人材活用の…
  5. 触媒表面の化学反応をナノレベルでマッピング
  6. 笑う化学には福来たる
  7. MEDCHEM NEWS 31-3号「ケムステ代表寄稿記事」
  8. 実験化学のピアレビューブログ: Blog Syn

注目情報

ピックアップ記事

  1. 中国へ講演旅行へいってきました②
  2. 核酸医薬の物語3「核酸アプタマーとデコイ核酸」
  3. 芝浦工業大学 化学エネルギーのみで駆動するゲルポンプの機能を実証~医療デバイスやソフトロボット分野での応用期待~
  4. パラジウムの市場価格が過去最高値を更新。ケミストへの影響は?
  5. タンパク質立体構造をPDBjViewerで表示しよう
  6. 第32回 液晶材料の新たな側面を開拓する― Duncan Bruce教授
  7. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ⑤ 最終回
  8. BASF、新規のキラル中間体生産プロセスを開発!
  9. フィンケルシュタイン反応 Finkelstein Reaction
  10. 錯体と有機化合物、触媒はどっち?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

コバルト触媒による多様な低分子骨格の構築を実現 –医薬品合成などへの応用に期待–

第 642回のスポットライトリサーチは、武蔵野大学薬学部薬化学研究室・講師の 重…

ヘム鉄を配位するシステイン残基を持たないシトクロムP450!?中には21番目のアミノ酸として知られるセレノシステインへと変異されているP450も発見!

こんにちは,熊葛です.今回は,一般的なP450で保存されているヘム鉄を配位するシステイン残基に,異な…

有機化学とタンパク質工学の知恵を駆使して、カリウムイオンが細胞内で赤く煌めくようにする

第 641 回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 生…

CO2 の排出はどのように削減できるか?【その1: CO2 の排出源について】

大気中の二酸化炭素を減らす取り組みとして、二酸化炭素回収·貯留 (CCS; Carbon dioxi…

モータータンパク質に匹敵する性能の人工分子モーターをつくる

第640回のスポットライトリサーチは、分子科学研究所・総合研究大学院大学(飯野グループ)原島崇徳さん…

マーフィー試薬 Marfey reagent

概要Marfey試薬(1-フルオロ-2,4-ジニトロフェニル-5-L-アラニンアミド、略称:FD…

UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立

ポイント 今回新たに設立される研究所 Baker Hughes Institute for…

メトキシ基で転位をコントロール!Niduterpenoid Bの全合成

ナザロフ環化に続く二度の環拡大というカスケード反応により、多環式複雑天然物niduterpenoid…

金属酸化物ナノ粒子触媒の「水の酸化反応に対する駆動力」の実験的観測

第639回のスポットライトリサーチは、東京科学大学理学院化学系(前田研究室)の岡崎 めぐみ 助教にお…

【無料ウェビナー】粒子分散の最前線~評価法から処理技術まで徹底解説~(三洋貿易株式会社)

1.ウェビナー概要2025年2月26日から28日までの3日間にわたり開催される三…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP