[スポンサーリンク]

化学者のつぶやき

JEOL RESONANCE「UltraCOOL プローブ」: 極低温で感度MAX! ①

 

化合物の構造決定には欠かせないNMR(核磁気共鳴分光法)。特に有機化学に関係する学生、研究者ではなくてはならない分析機器であるのは言うまでもありません。ただし、NMRは実は最も感度の悪い分析法の一つなんです。

特に13C-NNR。そもそも炭素の同位体のうち1%ほどしかない原子量13の炭素をみているのだから当たり前かもしれませんが、

 

サンプルの量が少なすぎて1H-NMRはとれたけど、13C-NMRがとれないよ!

4級炭素が全く見えないよ!

構造を解析するためにHMBC, HMQCなど測定したいだけど、時間がかかりすぎる

などなど、副生成物の同定しかり、さらには最近精密有機合成が増えていますので、世界中で微量サンプルのデータ収集の際に毎回苦労している研究者の姿が思い浮かびます。

そんな皆さんの不満を解決するのは、「極低温プローブ」と呼ばれる、NMR感度を飛躍的に向上させることのできる技術

今回は、2回に分けて、JEOL RESONANCE社が開発している極低温プローブ

UltraCOOLプローブ

を紹介したいと思います。

NMRの問題点と利点

前述しましたが、あらゆる機器分析のなかで、NMRは最も感度の悪い分析法の一つです。

これはNMRが対象とする共鳴現象のエネルギー帯が、電磁波の中で最も低い部類にあたるラジオ波に相当することに起因します。より高エネルギーの紫外/可視領域の電磁波を利用する紫外/可視分光法などは、NMRと比較にならない高感度で微量試料の分析をおこなうことができるのはご存知のことでしょう。

2015-12-01_16-40-03
図. 電磁波の種類(ラジオ波は、短波・超短波などの分類に入る)

出典:放射線ってなんだろうー放射線影響研究所

NMRがそれほど低感度で、分析に多量の試料を要求されるにも関わらず、化学領域でなぜこれほど重要かと言えば、それはやはりNMRが与えてくれる情報量の多さに他なりません。

未知試料の分子構造解析をおこなうために、NMRは必要不可欠の分析法と言ってよく、質量分析法や赤外分光法とともに、有機化学の分析における「三種の神器」の座を揺るぎないものにしています。しかし、やはり感度が低いことは分析化学者にとって大きなデメリットには違いなく、試料量が限られる天然物などの構造解析を現実的なものにするために、NMRの出現以来様々な高感度化の試みが研究されてきました。

 

感度をあげるための試みープローブの改良

古くはパルス/フーリエ変換法による積算効率の向上にともなった実効感度の増強や、高磁場化による感度上昇がおこなわれ、現在ではごく当たり前に利用されています。この他に、NMRの信号検出をより効率よくおこなうためのプローブ(電磁波パルスの照射とシグナルの検出を行う部位)開発も長年に渡り進められてきました。プローブの検出感度を向上させるための技術は種々あります。

probe_family.jpg
図. NMRのプローブってこんな感じ

 

たとえば、プローブの径を大きくする、つまり、Φ10mmプローブなどの大口径プローブは、大口径試料管を用いることにより、検出される試料の量を増やし、信号検出感度を高めることを狙っています。

一方で、径を小さくした、Φ3mmプローブなどの小口径プローブは、コイルと試料の距離を近づけ、濃縮した試料を効率よく検出することを目的としています。

さらには、キャピラリータイプのプローブなどでは、一般的な超伝導FT-NMR装置のプローブで使用されるヘルムホルツコイルの代わりに、より感度の高いソレノイドコイルを使用しています。このように、一般的なΦ5mmの試料管を使用せずに、特殊な試料形態で検出感度を向上させる方法は、それぞれに異なる特長を有しており、目的に応じて使い分けられます。

一方で通常の試料管を使用して検出感度を高めるには、これらの方法は適用できません。例えば試料量の限られた低溶解度の試料では、大口径プローブや小口径プローブを有効に活用することが難しいのです。

このような場合に有効なのが、極低温プローブ「UltraCOOL プローブ」です。

UltraCOOLプローブ?クライオプローブ?

ちなみに、極低温プローブを英語ではcryogenic probeと表現しますが、巷ではクライオプローブと呼ばれることがあります。

実は「クライオプローブ(CryoProbe)」はブルカー社の登録商標であり、一般名ではありません。「シーチキン」や「ウォークマン」みたいなもんですね。商標権は条約や法律によって保護された権利ですから、他社が勝手に使用することはできませんつまり、 JEOL RESONANCE社では、クライオプローブという商品名を使うことは出来ないわけです。

残念ながらブルカー社に遅れて極低温プローブを発売したアジレント社は、当初チリプローブ(ChillyProbe)という名称を使用していました。唐辛子を連想するからかどうかは定かではありませんが、いつの間にやらチリという名称は使用されなくなり、現在はコールドプローブ(Cold Probe)という名称を使用しています。

さらに残念ながら極低温プローブの発売が最後発であったJEOL RESONANCE社は、そんなわけで“クライオ”“コールド”も使うわけにはいきませんので、“クール”を使うことにしました。極低温なのでUltraをつけて「UltraCOOL Probe」となったわけです。ともあれ商品名というのは、なかなかに難しいものです。


cryoprobe.png

極低温プローブと感度

?極低温プローブは、検出コイルをはじめとする検出回路を極低温に冷却します。極低温に冷却された検出回路は、コイルの感度を高めると同時に、熱的なノイズを減少させることによって相対的に信号の検出限界を高めます。NMRにおける感度とは、信号(Signal)とノイズ(Noise)の強度比であるSN比で規定されます。従って、信号強度を高め、ノイズ強度を減少させることは、感度を大幅に向上させることに他なりません。

cryo2.png

では、どのくらい感度を上昇させることができるのか?その装置に必要な設備は?今回は基本的な知識までにしまして、次回からUltraCOOLの謎に迫っていきましょう。既にこの時点で気になる方はお問い合わせ先にお問い合わせください。

お問い合わせ先:株式会社JEOL RESONANCE

住所:〒196-8558 東京都昭島市武蔵野三丁目1番2号

Tel: 0120-134-788

FAX: 0120-734-788

E-mail: お問い合わせフォーム

参考サイト

本記事はJEOL RESONANCE社から寄稿いただいた文章に加筆したものです。

関連書籍

 

The following two tabs change content below.
webmaster

webmaster

Chem-Station代表。早稲田大学理工学術院准教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. イミンを求核剤として反応させる触媒反応
  2. ACS Macro Letters創刊!
  3. SciFinder Future Leaders in Chem…
  4. 英語発表に”慣れる”工夫を―『ハイブリッ…
  5. L-RAD:未活用の研究アイデアの有効利用に
  6. スルホニルアミノ酸を含むペプチドフォルダマーの創製
  7. 【追悼企画】化学と生物で活躍できる化学者ーCarlos Barb…
  8. 酸で活性化された超原子価ヨウ素

コメント

  • トラックバックは利用できません。

  • コメント (1)

  1. ultracool.png 化合物の構造決定には欠かせないNMR(核磁気共鳴分光法)。特に有機化学に関係する学生、研究者ではなくてはならない分析機器であるのは言うまでもありません。ただし、NMRは実は最も感度の悪い分析法の一つな

注目情報

ピックアップ記事

  1. 菅沢反応 Sugasawa Reaction
  2. オキソニウムイオンからの最長の炭素酸素間結合
  3. 今冬注目の有機化学書籍3本!
  4. 細見・櫻井アリル化反応 Hosomi-Sakurai Allylation
  5. 学生実験・いまむかし
  6. FT-IR(赤外分光法)の基礎と高分子材料分析の実際2【終了】
  7. 光刺激で超分子ポリマーのらせんを反転させる
  8. ケムステイブニングミキサー2016へ参加しよう!
  9. リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発
  10. 米国ACSジャーナル・冊子体廃止へ

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

スルホニルアミノ酸を含むペプチドフォルダマーの創製

南フロリダ大学・Jianfeng Caiらのグループは、L-アミノ酸とD-sulfono-γ-AAp…

布施 新一郎 Shinichiro Fuse

布施 新一郎 (ふせ しんいちろう、1977年12月27日-)は、日本の有機化学者である。東京工業大…

ニッケル触媒による縮合三環式化合物の迅速不斉合成

第108回のスポットライトリサーチは、大阪大学大学院工学研究科生越研究室PDのRavindra Ku…

トーマス・ホイ Thomas R. Hoye

トーマス・R・ホイ (Thomas R. Hoye、19xx年xx月xx日-)は、アメリカの有機化学…

Lindau Nobel Laureate Meeting 動画集のご紹介

Tshozoです。タイトルの件、"ヨーロッパリベンジ"の動画を見ながらWeb探索を夜な夜な続けており…

デヴィッド・ニセヴィッツ David A. Nicewicz

デヴィッド・A・ニセヴィッツ (David A. Nicewicz、19xx年x月x日-)は、米国の…

Chem-Station Twitter

PAGE TOP