[スポンサーリンク]

一般的な話題

ヤモリの足のはなし ~吸盤ではない~

[スポンサーリンク]

ヤモリの足の概観 キモイですねー(画像出典はこちら

 以前から注目していた研究成果を展開致します

Tshozoです。窓際は暑い季節になりました。

さて、ヤモリ。筆者の実家に戻ると、夜、光で明るい窓にペッタリひっつきながら昆虫類を食べているのをよく目にします。今回は一つの窓で違う個体が3匹くらい居ました。

gecko_06.pngこんな感じでした

 窓はガラスです。ツルツル。普通のイメージだと、吸盤かなんかで吸い付いて登ってることを想像するでしょうが、実は違います。ヤモリの足の表面には吸盤はありません。「毛」があるだけなのです。

gecko_08.png

ヤモリの足の先端部分の構造 こちらより筆者が改編して引用 → 

 上の写真のように「繊毛(Seta, 又はSetalと言うようです)」がワラワラと一杯生えており、吸盤らしき構造は全く見当たりません。さらに繊毛の先はもっと細かく、1um以下のサイズの箒が多数生えているようになっています。どうしてこういう構造で自分の体を支えられるのでしょうか。

 

gecko_05.png

天井とかもスルスルいけます

 それを探るためにカリフォルニア工科大学、ハーバード大、マサチューセッツ大アーマスト校等の一流大学が現在も活発に研究活動を行っています。今回はその研究動向をザックリとお話しできればと思います。お付き合いください。

まず、素朴な質問から。

 

①なんでくっつくのか?

ネタを先にばらしますと「実はまだよくわかってない」のです。色々な研究機関でAFMを用い測定を行ったケースや、モデルSetaeを作ったりしたケースで調べられてはいるものの、明確な結論が出ているわけではなさそうです。ただその中でもかなり先行しているLewis and Clark UniversityのKeller Autumn教授(原論文→ )の初歩的なモデル計算によると、

gecko_14.pngこちらより引用 → 

 という形で全Fという接着力(垂直方向)が表現されるようで、RはSetaの接触部先端半径、γはカベ側が持っている表面張力、NがそのSetaの本数、ということで決まるとしています。もちろんここから更に色々検討は進んでおり、上記のようなモデルに加えてナノサイズの世界で何かおかしなことが起こってるんではないかという研究結果も出ているようです。もちろんくっつき方や引っ張り方によってもかなり変わり、このモデルをどう作るかも重要かつ大きな研究テーマになっています。

ともかく、イメージはこれ↓。子供の頃にチャンピ〇ンとチャンピ〇ンでこういうふうに遊んだ方も居るかと思います。

gecko_09.png「雑誌をパラパラ重ねると引っ張っても取れない」、ヤモリが活かしている支持力のイメージ例
厳密には違いますが、ミクロン/サブミクロンレベルで同じようなことが起こっているようです

 さらに色々見ていくと

◆「湿気の影響が大きい」 → 
◆「リンパ腺が無いはずなのにヤモリの足跡から脂質が発見された」 → 
◆「かなり硬い物質(β-ケラチンというヤング率の高い物質)で出来ているのになんでかくっついてる」 → 

などの新たな知見も出てきており、未だその秘密が明らかになったとは言い難いでしょう。特に上記2番目の「脂質っぽいのがなんか付いてる(出てる?)」というのは個人的にはなかなか驚きで、人間のように皮脂のようなものをペタペタ出しながらくっついているのか、と思うと胸が熱くなります。

gecko_15.pngヤモリの足から出てる「何か」 引用 → 

gecko_16.pngNALDIによる「何か」の推定分子構造
なんでまたこんなものが、と思いますよね 
引用同上 → 

 ②人間がマネできるの?

できます。たとえばこれ↓。「グローバル・ニッチ・トップ」のスローガンで有名な日東電工殿は、2009年前後から本件による「接着剤によらない接着」という切り口で、大阪大学 中山教授との共研により、垂直配向カーボンナノチューブを用いた「ゲッコーテープ」というものを作っています。

 

gecko_17.pngたった1cm^2の垂直配向CNTで500mlペットボトルを支える 日東電工殿技報より引用 → 

 また、PNASに掲載されていました韓国ソウル大の研究成果であるコレ↓の凄いこと!ポリウレタンとナノインプリンティング技術を組み合わせて作ったようですが →  先端部までかなり忠実に再現されており驚愕でした。まさにバイオミメティクスとはこういうことを言うんではないでしょうか。

gecko_18.png上述のSetae先端部と非常にそっくり 引用 → 

 で、どこまで吊り下げられるのか。上の理論式に基づけば、Setaの本数が多ければ多いほど、重いモノでも吊れるはず。ということで300ポンド(≒140kg)まで吊り下げた例がこちら↓。しかもこれ繰り返し付け外しが出来る! 技術の進化というのはすごいもんですな。

gecko_19.png約100cm^2でガラス板に140kgの重りをぶら下げる!
Prof. Crosby 教授(マサチューセッツ大 アーマスト校) 引用 → 
 論文はこちら → ● 

 ③今後どうなるの?

応用開発が既にいろいろなところで進んでおり、実はこんなものがもう出来てます(引用:Stanford大による「Stickybot Project」 → ) (動画 → ) このロボット、買えるみたいですね。

gecko_14.jpg また、「スパイ〇ーマン」を人間の手で作ろうぜ、というプロジェクトもあり、その一部にも練り込まれています → 

これらの成果が材料の進化により市販化、現実のものとなれば、漫画「グラップラー刃牙」に出てきた「柳 龍光」氏(→ )のように、手の平で真空状態を作らずに、人間が垂直な窓ガラスを上に登っていける可能性があるわけです。その可能性だけでも筆者は心躍る次第です。それにこれ →  を組み合わせれば、人間ムササビの出来上がりですよ! 是非、この材料の進化に皆様の研究力を活かして頂きたいと感じております。

gecko_15.jpg

「Birdman」プロジェクト 死ぬまでに1度はやってみたいです

 この他、先に紹介した日東電工殿では、真空だろうが超低温だろうが高温だろうがこの構造体による接着性が比較的維持されること、またVOCが極めて少ないことに注目し、高精度の分析機器内への適用を目指して研究を継続しているようです → 。こうした思いがけない方向への活用も非常に楽しみなところです。

こういう楽しさを追求することが科学の本来の由来であるはず。権力の道具としての科学、ということは繰り返し述べていますが、科学の本質にはそれ以外にも「知的欲求に基づいた絶対智」が存在し、それが継承され更なる楽しさを産み出すものだ、ということを信じるものであります。

ということで今回はこんなところで。

 

(蛇足1)こうした研究が既に多く軍事系のサイトで紹介されてるあたりは人間の業として救いがたいものも感じますが・・・(例のキモい軍用犬ロボットで有名な「Boston Dynamics」が開発しています→ )。ま、結局はニンゲンのやることですし、技術は包丁と同じで使い方次第というわけですよね。

(蛇足2)今回調べたときに分かったのですが、ヤモリだけでなくハエなどの虫も同じような構造を足に持っているようです。誰に教えられたわけでもないのに・・・本当に生物というのは不思議なもんです。

gecko_11.pngこちらより引用 → 

参考文献

  • “Gecko Feet: Natural Attachment Systemsfor Smart Adhesion” Bharat Bhushan ・ Robert A. Sayer → 
  • “Gecko-Inspired Polymer Adhesives” Yi?it Menguc and Metin Sitti → 
  • “Direct evidence of phospholipids in gecko footprints and spatula-substrate contact interface detected using surface-sensitive spectroscopy” Peter H. Niewiarowski and Ali Dhinojwala et Al, → 
  • “Properties, Principles, and Parameters of the Gecko Adhesive System”, Kellar Autumn → 
  • “A nontransferring dry adhesive with hierarchical polymer nanohairs” PNAS, 2009,  vol.106  no.14  5639-5644 → 
  • “日東電工技報90号 – 2009年 vol.47” → 
  • Biomimetics: Looking Beyond Fibrillar Features to Scale Gecko-Like AdhesionAdvanced Materials. Volume 24, Issue 8, pages 1078-1083 及び 
  • “Evidence for van der Waals adhesion in gecko setae” PNAS, 2003,? vol. 100,? no. 19, 10603-10606 → 
Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. イオンの出入りを制御するキャップ付き分子容器の開発
  2. シクロデキストリンの「穴の中」で光るセンサー
  3. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFi…
  4. 「anti-マルコフニコフ型水和反応を室温で進行させる触媒」エー…
  5. Pixiv発!秀作化学イラスト集【Part 2】
  6. 過ぎ去りし器具への鎮魂歌
  7. 2020年ケムステ人気記事ランキング
  8. 波動-粒子二重性 Wave-Particle Duality: …

注目情報

ピックアップ記事

  1. 分⼦のわずかな⾮対称性の偏りが増幅される現象を発⾒
  2. エーザイ 抗がん剤「ハラヴェンR」日米欧で承認取得 
  3. 関東化学2019年採用情報
  4. 光で分子の結合状態を変えることに成功
  5. 9-フルオレニルメチルオキシカルボニル保護基 Fmoc Protecting Group
  6. 出張増の強い味方!「エクスプレス予約」
  7. 化学小説まとめ
  8. 渡邉 峻一郎 Shun Watanabe
  9. コルベ電解反応 Kolbe Electrolysis
  10. 光を吸わないはずの重原子化合物でも光反応が進行するのはなぜか?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年8月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

第18回 Student Grant Award 募集のご案内

公益社団法人 新化学技術推進協会 グリーン・サステイナブルケミストリーネットワーク会議(略称:JAC…

杉安和憲 SUGIYASU Kazunori

杉安和憲(SUGIYASU Kazunori, 1977年10月4日〜)は、超分…

化学コミュニケーション賞2024、候補者募集中!

化学コミュニケーション賞は、日本化学連合が2011年に設立した賞です。「化学・化学技術」に対する社会…

相良剛光 SAGARA Yoshimitsu

相良剛光(Yoshimitsu Sagara, 1981年-)は、光機能性超分子…

光化学と私たちの生活そして未来技術へ

はじめに光化学は、エネルギー的に安定な基底状態から不安定な光励起状態への光吸収か…

「可視光アンテナ配位子」でサマリウム還元剤を触媒化

第626回のスポットライトリサーチは、千葉大学国際高等研究基幹・大学院薬学研究院(根本研究室)・栗原…

平井健二 HIRAI Kenji

平井 健二(ひらい けんじ)は、日本の化学者である。専門は、材料化学、光科学。2017年より…

Cu(I) の構造制御による π 逆供与の調節【低圧室温水素貯蔵への一歩】

2024年 Long らは、金属有機構造体中の配位不飽和な三配位銅(I)イオンの幾何構造を系統的に調…

可視光活性な分子内Frustrated Lewis Pairを鍵中間体とする多機能ボリルチオフェノール触媒の開発

第 625 回のスポットライトリサーチは、名古屋大学大学院 工学研究科 有機・高…

3つのラジカルを自由自在!アルケンのアリール-アルキル化反応

アルケンの位置選択的なアリール-アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP