[スポンサーリンク]

一般的な話題

なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編

[スポンサーリンク]

青色LEDにまつわるお話、前回の「基礎的な研究背景編」に引き続き参りましょう。

LED_12.png 現在のLED製造に関わる企業群 現在韓国企業群の猛追を受けているのが日亜化学
ロゴは各社HPから引用

 Tshozoです。早速いきます。前回で青色LEDの研究開発の経緯を中心に書きましたが、今回は性能向上~量産化でどういう開発課題があったかを記載したいと思います。

なお、本記事以降、文章を読まれて不快な思いをされる方も居られるかもしれません。不適切な表現があれば元文がわかる形で改編致しますのでどうぞご指導頂きますようお願いいたします。また、参考文献として下記書籍に全て目を通し、不適切な表現・間違った情報を記載しないよう留意しましたことを付記致します。

LED_11_1.png 本章の参考文献として使用した書籍類
まさか最初に読んで10年近く経ってから引っ張り出すことになるとは・・・

青色LEDの量産プロセスとは

前回の記事では青色LEDの構造については述べましたが、その一般的な量産方法は未記述でした。以下はその詳細です。

青色LEDはその心臓部のほとんどを「MOCVD(又はMOPVE)」、日本語にすると「有機金属気相成長法 Metal Organic Chemical Vapor Deposition」というプロセスで製造しています。これは以前こちらの記事で紹介しましたが、要は①超高真空中で超綺麗な基板を用意し、②基板を温め(1000℃とか)、③金属原子などを含んだ謎物質をガスにして基板上で熱分解させ金属原子と所定の元素だけを残すという、原理的には原子1層の成膜も可能な、鬼畜成膜技術です。

LED_13.pngMOCVDプロセスをものすごく簡略化した図
GaNの場合、基板はサファイア(Al2O3)か炭化ケイ素(SiC)だが、
最近では低コスト化のためSiも使われる(OSRAM社)

LED_16.png謎物質(有機金属材料)はトリメチルガリウム((CH3)3Ga)など Al系も存在
だいたいが空気中で不安定なうえに毒性が高いが、これが蒸気になるのでMOCVDができる

今回の受賞に対する技術的なポイント

このMOCVDが青色LEDに必須の製法であり、赤崎教授、天野教授がそれこそ20年近く格闘してきたものです。MOCVD技術のポイントは挙げるときりがないのですが、今回受賞に関連した点を一つだけ挙げると「高温の基板表面付近で、謎物質(+アンモニアとか)の混合ガス流れを『厳密に』層流状態にする」ことです。要は乱流を起すと膜厚や結晶方向が変わって汚い結晶しか出来ませんし、しかも最終的なLEDにするには量子井戸部を含めて10層以上積み重ねて成膜しなければならず、特にこの「量子井戸」に至っては各層を原子レベルで厚みを制御しなければならないとなると、乱流の「ら」の字も絶対に発生しないような製法と装置が必要になるわけです。

LED_03.pngLEDの断面模式図 参考文献1より再掲

 この凄まじく難易度の高いMOCVD量産化技術に加えて、必要なのがLEDパッケージ化技術。MOCVDを含めた一般的なLED製法フローは下図のようになっています。これらの製法に耐え、最終的に高い性能安定性を持った組み合わせでなければなりません。GaN結晶だけを作ったからと言ってLEDは完成しないわけです。

LED_18.png 青色LEDの代表的なプロセス例(説明の都合上、電極構造がやや異なるのに注意
MOCVDで複層成膜したあと、発光部を切り分けて封止する 参考文献6より引用して筆者が改編

 蛇足ながら、LEDはこうした複雑な工程を辿るため未だ未だコストが高いのですが、世界初、日本初の量産化を実現したその功績はやはり極めて大きいと言えます。

LED_17.png2012年時点でのLEDランプの1ルーメンあたりのコスト(つまり$/lm)
参考文献6から引用

高性能化、量産化の技術的なポイント

この中で極めて難易度の高かった開発・設計要素を上げるとすると、やはり

 1、電子線照射以外でのn-GaNのp化製法の確立(電子線手法は天野教授が確立)
2、量子井戸の厚さ、合成方法、構成元素決定とその製法の確立
3、電極構造の決定

の3点でしょう。

これを「ツーフローMOCVD」という特殊な技術をもとに、全て解決して独力で成し遂げ、世界一の出力性能(会社発表当時で競合他社の10倍以上にも達した)を持つLEDを実現し、量産化まで貢献し、数々のインパクトの高い論文をファーストオーサーで出し、今回の受賞につなげたと、中村氏は諸々の著者の中で述べています(参考文献4)。

LED_20.png「ツーフローMOCVD」構成図 参考文献5から引用
右側(赤矢印)から原料を、上側(青矢印)からキャリアガスを基板(緑)上へ流し、乱流を抑える構想

 しかし、です。筆者が色々調べてみたところ、どうにも素直に中村氏の主張を信じれなくなってきたのです。

その中身についてはちょっと長くなりそうなので次回。今回はこんなところで。

 

参考文献

  1.  ドイツ AIXTRON社 “MOCVD Technology for LED” リンク
  2. アメリカ VEECO社 社外発表資料 リンク
  3. ドイツ AIXTRON社 ”How MOCVD Works”  リンク オススメ
  4. Shuji Nakamura “Blue, Green & White LEDs and Blue Laser Diodes” 講演資料 リンク
  5. Yole Development, “LED Cost and Technology Trends” リンク この資料は極めて素晴らしいです
Tshozo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. UV-Visスペクトルの楽しみ方
  2. 天然物の構造改訂:30年間信じられていた立体配置が逆だった
  3. 磁力で生体触媒反応を制御する
  4. アメリカ化学留学 ”実践編 ー英会話の勉強ーR…
  5. 怒涛の編集長 壁村耐三 ~論文と漫画の共通項~
  6. 論文をグレードアップさせるーMayer Scientific E…
  7. 論文投稿・出版に役立つ! 10の記事
  8. アカデミックの世界は理不尽か?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. カルシウムイオン濃度をモニターできるゲル状センサー
  2. 脂肪燃やすアミノ酸に効果 「カルニチン」にお墨付き
  3. 化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始
  4. アルドール・スイッチ Aldol-Switch
  5. 化学者のためのエレクトロニクス入門⑥ ~エレクトロニクス産業の今後編~
  6. 芳香族ボロン酸でCatellani反応
  7. 生体内での細胞選択的治療を可能とする糖鎖付加人工金属酵素
  8. 東日本大震災から1年
  9. 米デュポン、原料高騰で製品値上げ
  10. CASがSciFinder-nの画期的逆合成プランナーの発表で研究・開発の生産性向上を促進

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

アメリカ大学院留学:卒業後の進路とインダストリー就活(2)

前回の記事では、アメリカのPhD取得後の進路について、一般的な進路や就活を始める時期について紹介しま…

【第11回Vシンポ特別企画】講師紹介③:大内 誠 先生

今回の記事では、第11回バーチャルシンポジウム「最先端精密高分子合成」をより楽しむべく講師の一人であ…

第131回―「Nature出版社のテクニカルエディターとして」Laura Croft博士

第131回の海外化学者インタビューはローラ・クロフト博士です。Nature Chemistry誌とN…

【書籍】機器分析ハンドブック2 高分子・分離分析編

2020/10/20に刊行されたばかりのホットな書籍をご紹介します。概要はじめて機器…

アメリカ大学院留学:卒業後の進路とインダストリー就活(1)

PhD留学について、受験や大学院生活についての情報は豊富に手に入るようになってきていますが、卒業後の…

Chem-Station Twitter

PAGE TOP