[スポンサーリンク]

一般的な話題

なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編

[スポンサーリンク]

青色LEDにまつわるお話、前回の「基礎的な研究背景編」に引き続き参りましょう。

LED_12.png 現在のLED製造に関わる企業群 現在韓国企業群の猛追を受けているのが日亜化学
ロゴは各社HPから引用

 Tshozoです。早速いきます。前回で青色LEDの研究開発の経緯を中心に書きましたが、今回は性能向上~量産化でどういう開発課題があったかを記載したいと思います。

なお、本記事以降、文章を読まれて不快な思いをされる方も居られるかもしれません。不適切な表現があれば元文がわかる形で改編致しますのでどうぞご指導頂きますようお願いいたします。また、参考文献として下記書籍に全て目を通し、不適切な表現・間違った情報を記載しないよう留意しましたことを付記致します。

LED_11_1.png 本章の参考文献として使用した書籍類
まさか最初に読んで10年近く経ってから引っ張り出すことになるとは・・・

青色LEDの量産プロセスとは

前回の記事では青色LEDの構造については述べましたが、その一般的な量産方法は未記述でした。以下はその詳細です。

青色LEDはその心臓部のほとんどを「MOCVD(又はMOPVE)」、日本語にすると「有機金属気相成長法 Metal Organic Chemical Vapor Deposition」というプロセスで製造しています。これは以前こちらの記事で紹介しましたが、要は①超高真空中で超綺麗な基板を用意し、②基板を温め(1000℃とか)、③金属原子などを含んだ謎物質をガスにして基板上で熱分解させ金属原子と所定の元素だけを残すという、原理的には原子1層の成膜も可能な、鬼畜成膜技術です。

LED_13.pngMOCVDプロセスをものすごく簡略化した図
GaNの場合、基板はサファイア(Al2O3)か炭化ケイ素(SiC)だが、
最近では低コスト化のためSiも使われる(OSRAM社)

LED_16.png謎物質(有機金属材料)はトリメチルガリウム((CH3)3Ga)など Al系も存在
だいたいが空気中で不安定なうえに毒性が高いが、これが蒸気になるのでMOCVDができる

今回の受賞に対する技術的なポイント

このMOCVDが青色LEDに必須の製法であり、赤崎教授、天野教授がそれこそ20年近く格闘してきたものです。MOCVD技術のポイントは挙げるときりがないのですが、今回受賞に関連した点を一つだけ挙げると「高温の基板表面付近で、謎物質(+アンモニアとか)の混合ガス流れを『厳密に』層流状態にする」ことです。要は乱流を起すと膜厚や結晶方向が変わって汚い結晶しか出来ませんし、しかも最終的なLEDにするには量子井戸部を含めて10層以上積み重ねて成膜しなければならず、特にこの「量子井戸」に至っては各層を原子レベルで厚みを制御しなければならないとなると、乱流の「ら」の字も絶対に発生しないような製法と装置が必要になるわけです。

LED_03.pngLEDの断面模式図 参考文献1より再掲

 この凄まじく難易度の高いMOCVD量産化技術に加えて、必要なのがLEDパッケージ化技術。MOCVDを含めた一般的なLED製法フローは下図のようになっています。これらの製法に耐え、最終的に高い性能安定性を持った組み合わせでなければなりません。GaN結晶だけを作ったからと言ってLEDは完成しないわけです。

LED_18.png 青色LEDの代表的なプロセス例(説明の都合上、電極構造がやや異なるのに注意
MOCVDで複層成膜したあと、発光部を切り分けて封止する 参考文献6より引用して筆者が改編

 蛇足ながら、LEDはこうした複雑な工程を辿るため未だ未だコストが高いのですが、世界初、日本初の量産化を実現したその功績はやはり極めて大きいと言えます。

LED_17.png2012年時点でのLEDランプの1ルーメンあたりのコスト(つまり$/lm)
参考文献6から引用

高性能化、量産化の技術的なポイント

この中で極めて難易度の高かった開発・設計要素を上げるとすると、やはり

 1、電子線照射以外でのn-GaNのp化製法の確立(電子線手法は天野教授が確立)
2、量子井戸の厚さ、合成方法、構成元素決定とその製法の確立
3、電極構造の決定

の3点でしょう。

これを「ツーフローMOCVD」という特殊な技術をもとに、全て解決して独力で成し遂げ、世界一の出力性能(会社発表当時で競合他社の10倍以上にも達した)を持つLEDを実現し、量産化まで貢献し、数々のインパクトの高い論文をファーストオーサーで出し、今回の受賞につなげたと、中村氏は諸々の著者の中で述べています(参考文献4)。

LED_20.png「ツーフローMOCVD」構成図 参考文献5から引用
右側(赤矢印)から原料を、上側(青矢印)からキャリアガスを基板(緑)上へ流し、乱流を抑える構想

 しかし、です。筆者が色々調べてみたところ、どうにも素直に中村氏の主張を信じれなくなってきたのです。

その中身についてはちょっと長くなりそうなので次回。今回はこんなところで。

 

参考文献

  1.  ドイツ AIXTRON社 “MOCVD Technology for LED” リンク
  2. アメリカ VEECO社 社外発表資料 リンク
  3. ドイツ AIXTRON社 ”How MOCVD Works”  リンク オススメ
  4. Shuji Nakamura “Blue, Green & White LEDs and Blue Laser Diodes” 講演資料 リンク
  5. Yole Development, “LED Cost and Technology Trends” リンク この資料は極めて素晴らしいです
The following two tabs change content below.
Tshozo

Tshozo

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. リケジョ注目!ロレアル-ユネスコ女性科学者日本奨励賞-2013
  2. ホイスラー合金を用いる新規触媒の発見と特性調節
  3. 触媒なの? ?自殺する酵素?
  4. サイエンスアゴラ2014総括
  5. 関東化学2019年採用情報
  6. 「機能性3Dソフトマテリアルの創出」ーライプニッツ研究所・Möl…
  7. 地方の光る化学企業 ~根上工業殿~
  8. 日本薬学会第139年会 付設展示会ケムステキャンペーン

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 脱離反応 Elimination Reaction
  2. ミノキシジル /Minoxidil
  3. ジェニファー・ダウドナ Jennifer Doudna
  4. レーン 超分子化学
  5. カーボンナノペーパー開発 信州大、ナノテク新素材
  6. ピーナッツ型分子の合成に成功!
  7. 環サイズを選択できるジアミノ化
  8. 第六回サイエンス・インカレの募集要項が発表
  9. オペレーションはイノベーションの夢を見るか? その3+まとめ
  10. 【21卒】太陽ホールディングスインターンシップ

関連商品

注目情報

注目情報

最新記事

第49回―「超分子の電気化学的挙動を研究する」Angel Kaifer教授

第49回の海外化学者インタビューは、エンジェル・カイファー教授です。マイアミ大学化学科で超分子系電気…

日本化学会 第100春季年会 市民公開講座 夢をかなえる科学

■ 概要企画名:    市民公開講座 夢をかなえる科学主催:        公益社団法人…

第48回―「周期表の歴史と哲学」Eric Scerri博士

第48回の海外化学者インタビューは、エリック・セリー博士です。英国で教育を受け、カリフォルニア大学ロ…

ペプチド縮合を加速する生体模倣型有機触媒

2019年、ニューヨーク大学のParamjit S. Aroraらは、活性アシル中間体への求核付加遷…

第47回―「ロタキサン・カテナン・クラウンエーテルの超分子化学」Harry Gibson教授

第47回の海外化学者インタビューは、ハリー・ギブソン教授です。バージニア工科大学の化学科に所属し、プ…

女優・吉岡里帆さんが、化学大好きキャラ「DIC岡里帆(ディーアイシーおか・りほ)」に変身!

印刷インキや有機顔料世界トップシェアのDIC株式会社は、2020年1月より、数々のヒット作に出演し、…

Chem-Station Twitter

PAGE TOP