[スポンサーリンク]

化学者のつぶやき

マクマリーを超えてゆけ!”カルボニルクロスメタセシス反応”

[スポンサーリンク]

カルボニル化合物の立体選択的交差McMurryカップリングが開発された。鉄触媒を用いるとZ体、クロム触媒を用いるとE体のオレフィンが選択的に得られる。

カルボニルクロスメタセシス反応

二重結合を組み換えるメタセシス反応は、新たな炭素-炭素二重結合形成の有力な手法である。オレフィンメタセシス反応は周知のとおり[1]、近年ではアルケンとカルボニル化合物からオレフィンを得るメタセシス反応も開発された[2]。また、2つのカルボニル化合物からオレフィンを得る反応としてMcMurryカップリングが知られる[3]。しかし、同カップリングは、異なるカルボニル化合物の場合、3種類のアルケン混合物を与え、立体選択性(E/Z選択性)の制御も困難である(図1A)。

この問題を解決した好例として、Ottらの報告がある[4]。彼らは独自に合成したホスファニルホスホナートを用いた立体選択的交差McMurryカップリング(カルボニルクロスメタセシス反応*)を開発した(図1B)。このホスファニルホスホナートをアルデヒドと反応させホスファアルケンへ変換した後、別のアルデヒドと反応させ、熱力学的に安定なE-オレフィンを選択的に得た。しかし、その後の研究例も含め[5]一方のアルデヒドは芳香族アルデヒドのみ適用可能であった。

今回著者らは、この基質の限定性を打破するカルボニルクロスメタセシス反応の開発に挑んだ(図1C)。独自で見いだした、アルデヒドからの鉄カルベン生成法がこの開発の肝である[6]。この手法を用いてカルベノイドを生成後、リンイリドへと変換できれば[7]Wittig反応のように異なるカルボニル化合物と反応し、オレフィンが得られると考えた(図1C path A)。また著者らは、高井・内本オレフィン合成[8]を参考にクロム触媒を用いて、カルボニル化合物をgem-ジクロム化合物に変換後、カルボニル化合物と反応させオレフィンを与える別経路も考案した(図1C path B)。

図1. (A) McMurryカップリング (B) 以前のカルボニルクロスメタセシス反応の例 (C) 今回の研究

 

“Carbonyl Cross-Metathesis via Deoxygenative gem-di-Metal Catalysis”

Zhang, L.; Nagib, D. A. Nat. Chem. 2023, Advanced article. DOI: 10.1038/s41557-023-01333-8

論文著者の紹介

研究者:Lumin Zhang (张禄敏)

研究者の経歴:
2009–2013                  B.S., Sichuan Normal University
2013–2016                  M.Sc., Shanghai Institute of Organic Chemistry, China (Profs. Jun Yang and Ran Hong)
2017–2020                  Ph.D., Heidelberg University, Germany (Prof. A. Stephen K. Hashmi)
2020–2023                  Postdoc, Ohio State University, USA (Prof. David A. Nagib)
2023–                           Researcher, Shanghai Institute of Organic Chemistry, China

研究内容:ナイトレン、カルベン、ラジカルを含む新規反応開発

研究者:David A. Nagib

研究者の経歴:
2006                              B.S., Boston College, USA (Prof. Scott J. Miller)
2011                              Ph.D., Princeton University, USA (Prof. David W. C. MacMillan)
2011–2014                  NIH Postdoc, University of California, Berkeley, USA (Prof. F. Dean Toste)
2014–2020                  Assistant Professor, The Ohio State University, USA
2020–2022                  Associate Professor, The Ohio State University, USA
2022–                           Professor, The Ohio State University, USA

研究内容:ラジカル発生を伴うC–H, C–O官能基化

論文の概要

著者らは、カルベン→イリド経路(図1C path A)のカルボニルメタセシス反応を開発した(図2A 左)。脂肪族アルデヒド1Aに対しZnBr2、BzBrを作用させた後、LiCl、Znを加え、亜鉛カルベノイド3を得た。続けて、FeCl2、PPh3、アルデヒド1Bと反応させZ-オレフィン7Aa–7Ac を高立体選択的に得ることに成功した。推定反応機構を示す(図2B)1Aから生成した2に対し、亜鉛の挿入によりカルベノイド3となる。続いて、鉄とトランスメタル化、a脱離により安定なカルベン中間体5が生成する。5がPPh3とカルベン移動し、生じたリンイリド61Bが反応することでZ7Aを与える。

続いて、ジクロム化合物経路(図1C path B)から、E-オレフィンが選択的に得られることを見いだした(図2A右)。2に対して、1B、CrCl2、dtbbpy、LiI、TMSClおよび還元剤Mnを作用させることで、E-オレフィン7Ba–7Bcを高立体選択的に得た。1Aから生成したgem-ジクロム化合物10が、1Bと反応し7BとCr(III)11を与える。11は還元されCr(II)を再生する機構を提唱している(図2C)[9]

図2. (A) 基質適用範囲 (B) カルベン→イリド経路の推定反応機構 (C) ジクロム化合物経路の推定反応機構

以上、著者らは新規カルボニルクロスメタセシス反応の開発に成功した。基質の適用範囲が広がり、用いる金属触媒によりE/Z-オレフィンを作り分けられるため、より自在な炭素-炭素二重結合形成が可能である。
*カルボニルクロスメタセシス反応:クロスメタセシス反応は異なる化合物同士の分子間のメタセシス反応をいう。今回のカルボニルクロスメタセシス反応は、交差McMurryカップリング(カルボニル化合物の交差脱酸素型二量化)のことを著者の意向を踏まえて使用した。

参考文献

  1. Hoveyda, A. H.; Zhugralin, A. R. The Remarkable Metal-Catalysed Olefin Metathesis Reaction. Nature 2007, 450, 243–251. DOI: 1038/nature06351
  2. (a) Albright, H.; Davis, A. J.; Gomez-Lopez, J. L.; Vonesh, H. L.; Quach, P. K.; Lambert, T. H.; Schindler, C. S. Carbonyl–Olefin Metathesis. Chem. Rev.2021, 121, 9359–9406. DOI: 10.1021/acs.chemrev.0c01096 (b) Griffith, A. K.; Vanos, C. M.; Lambert, T. H. Organocatalytic Carbonyl–Olefin Metathesis. J. Am. Chem. Soc. 2012, 134, 18581–18584. DOI: 10.1021/ja309650u (c) Ludwig, J. R.; Zimmerman, P. M.; Gianino, J. B.; Schindler, C. S. Iron(III)-Catalysed Carbonyl–Olefin Metathesis. Nature 2016, 533, 374–379. DOI: 10.1038/nature17432 (d) Veluru Ramesh Naidu; Bah, J.; Franzén, J. Direct Organocatalytic Oxo-Metathesis, a trans-Selective Carbocation-Catalyzed Olefination of Aldehydes: Direct Organocatalytic Oxo-Metathesis. Eur. J. Org. Chem. 2015, 2015, 1834–1839. DOI: 10.1002/ejoc.201403651
  3. McMurry, J. E. Carbonyl-Coupling Reactions Using Low-Valent Titanium. Chem. Rev. 1989, 89, 1513–1524. DOI: 10.1021/cr00097a007
  4. Esfandiarfard, K.; Mai, J.; Ott, S. Unsymmetrical E-Alkenes from the Stereoselective Reductive Coupling of Two Aldehydes. J. Am. Chem. Soc. 2017, 139, 2940–2943. DOI: 10.1021/jacs.7b00428
  5. (a) Wei, W.; Dai, X.-J.; Wang, H.; Li, C.; Yang, X.; Li, C.-J. Ruthenium (II)-Catalyzed Olefination via Carbonyl Reductive Cross-Coupling. Chem. Sci. 2017, 8, 8193–8197. DOI: 10.1039/C7SC04207H (b) Wang, S.; Lokesh, N.; Hioe, J.; Gschwind, R. M.; König, B. Photoinitiated Carbonyl-Metathesis: Deoxygenative Reductive Olefination of Aromatic Aldehydes via Photoredox Catalysis. Chem. Sci. 2019, 10, 4580–4587. DOI: 10.1039/C9SC00711C
  6. (a)Wang, L.; Lear, J. M.; Rafferty, S. M.; Fosu, S. C.; Nagib, D. A. Ketyl Radical Reactivity via Atom Transfer Catalysis. Science 2018, 362, 225–229. DOI: 1126/science.aau1777 (b) Zhang, L.; DeMuynck, B. M.; Paneque, A. N.; Rutherford, J. E.; Nagib, D. A. Carbene Reactivity from Alkyl and Aryl Aldehydes. Science 2022, 377, 649–654. DOI: 10.1126/science.abo6443
  7. Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; de Vicente, J. Generation of Phosphoranes Derived from Phosphites. A New Class of Phosphorus Ylides Leading to High E Selectivity with Semi-Stabilizing Groups in Wittig Olefinations. J. Am. Chem. Soc. 2003, 125, 6034–6035. DOI: 10.1021/ja029573x
  8. Okazoe, T.; Takai, K.; Utimoto, K. (E)-Selective Olefination of Aldehydes by Means of gem-Dichromium Reagents Derived by Reduction of gem-Diiodoalkanes with Chromium(II) Chloride. J. Am. Chem. Soc. 1987, 109, 951–953. DOI: 10.1021/ja00237a081
  9. Fürstner, A.; Shi, N. Nozaki–Hiyama–Kishi Reactions Catalytic in Chromium. J. Am. Chem. Soc. 1996, 118, 12349–12357. DOI: 10.1021/ja9625236
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 誤解してない? 電子の軌道は”軌道”では…
  2. 天然物の全合成研究ーChemical Times特集より
  3. 鉄の新たな可能性!?鉄を用いたWacker型酸化
  4. Pallambins A-Dの不斉全合成
  5. Pure science
  6. 僅か3時間でヒトのテロメア長を検出!
  7. 【25卒化学系イベント】 「化学系女子学生のための座談会(11/…
  8. AIと融合するバイオテクノロジー|越境と共創がもたらす革新的シン…

注目情報

ピックアップ記事

  1. 100兆分の1秒を観察 夢の光・XFEL施設公開
  2. 究極のナノデバイスへ大きな一歩:分子ワイヤ中の高速電子移動
  3. 三菱化学、酸化エチレン及びグリコールエーテルの価格を値上げ
  4. 香料:香りの化学3
  5. リガンド革命
  6. 素粒子と遊ぼう!
  7. インフルエンザ治療薬と記事まとめ
  8. 【大阪開催2月26日】 「化学系学生のための企業研究セミナー」
  9. 2014年化学10大ニュース
  10. 花粉症対策の基礎知識

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP