[スポンサーリンク]

スポットライトリサーチ

細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドができる

[スポンサーリンク]

第276回のスポットライトリサーチは、東京農工大学大学院工学研究院 准教授の吉野 大輔(よしの だいすけ)さんにお願いしました。

吉野先生は2019年の11月から東京農工大で研究室を主催されています。機械工学を専門とされていますが、取り組む研究分野は多種多様。異分野との境界を乗り越えた研究展開が魅力的です。特に、メカノバイオロジーを中心に研究を展開されています。

今回紹介いただける内容は、超撥水材料を利用したアイデアで手軽に大サイズのがんスフェロイド(細胞凝集体)を作製する方法の報告です。アイキャッチ画像はまるでビー玉か何かにしか見えませんが、皿状のくぼみに置かれた液滴です。材料科学×機械工学をバイオロジーのイシューに応用した、まさに異分野連携のたまものですね! 本成果は、ACS Appl. Bio Mater.誌に原著論文として公開され東京農工大学からプレスリリースされています。

“CNC-Milled Superhydrophobic Macroporous Monoliths for 3D Cell Culture”
Gen Hayase, and Daisuke Yoshino,
ACS Appl. Bio Mater. 3, 4747–4750 (2020).  doi: 10.1021/acsabm.0c00719

それでは、吉野さんからのメッセージをご覧ください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

今回、私たちは球形のがん腫瘍(がんスフェロイド)を実験室で簡単に作る手法を開発しました。私たちのからだの中で発生したがん細胞は、3次元的な組織(がん;悪性腫瘍)を作るように増殖します。がん細胞は、2次元と3次元のそれぞれの培養方法で異なる特性を示すことが知られています。これまでの研究では、培養皿底面に接着させて培養したがん細胞株を用いていた(2次元培養)ため、体内の腫瘍が存在する環境を再現することは困難でした。近年では、数種類のがん細胞の3次元培養方法が開発・実用化されていますが、実験者が狙った形状や大きさのがんスフェロイドを作ることが難しく、実験の再現性の面で課題がありました。今回開発した手法によって、再現性の課題をクリアし、がんスフェロイドを“誰でも同じように作れる”ようになりました。

共同研究者の早瀬さん(本論文の筆頭・責任著者)が開発した超撥水性のモノリス型多孔体(コアシェル型ゲル)に、3D-CADで作成した3次元モデルをそのまま削り出すことができるCNC切削装置を用いて、数百µmオーダーの構造物を削り出しました。そのうちの1つが今回のスフェロイド作製に用いたマイクロウェルです(図1)。このマイクロウェルに、ゲル化して細胞の足場になるコラーゲン溶液とがん細胞を混ぜて滴下し、37 ºC、30分程度でゲル化させ、その後3〜5日間培養液に漬けて培養するだけで直径数mmサイズの巨大ながんスフェロイドが作製できます(図2)。スフェロイド作製行程は、さながらたこ焼きを作る要領です(“返し”は必要ないですが・・・)(図3)。私たちの研究グループで試してみたところ、最大で直径5 mmのがんスフェロイドが5日間で作製可能です。

図1 3D-CADで作成したマイクロウェルの加工データ(左)と撥水性材料を加工して実際に製作したマイクロウェル(右)

図2 超撥水性のマイクロウェルを用いて作成した1 mm超の乳がんスフェロイドの顕微鏡画像

図3 ゲル化したがんスフェロイドをマイクロピペットで掬って、培養液に移す様子

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

「誰でも同じように作れる」という点を大事にしました。スフェロイドの培養は、時間がかかる上に、狙った形状、大きさに作るのが難しい印象がありました。実際に市販のキット・試薬を用いてスフェロイド作製を試みても、大きくきれいな球形に作ることは至難の技で、潰れた円盤形状になってしまいます。研究室ごとの秘伝のノウハウに頼った経験的な実験手法では、新たに取り組もうとする研究者や時間の限られた学生にとっては敷居の高いテーマになり、研究の進展や多様性の確保に影響が出るように感じました。また、自身の研究室においても、ノウハウとして確立しなければ再現性を確保することが難しい事態になってしまう恐れがあります。先輩の実験結果が再現できない・・・そんな恐怖の事態は事前に回避する必要があります。

誰でも同じように(短期間で)スフェロイドが作れる方法はないものかと考えながら、たまたま通った大好物のたこ焼き屋の前で職人さんがたこ焼きを作っている様子を見て、閃いたわけです。たこ焼きは職人さんが変わっても同じ大きさだ。早瀬さんが開発した超撥水性のモノリス型多孔体にたこ焼き鉄(銅)板状の溝を彫ればうまく球形を保持できるのではないかと思いつきました。最初は半球状に溝を掘って試してみましたが、作ったスフェロイドをうまく掬えないという問題が生じました。試行錯誤を繰り返した結果、現在のお皿状の溝を彫ったマルチウェルが完成しました。後で気づきましたが(早瀬さんは最初から気づいていたようですが)、単に溝を彫った超撥水性モノリス型多孔体をひっくり返して培養液にスフェロイドを落としてやれば、半球状の溝でもよかったようです、笑

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

いざ論文になってしまうと簡単に加工ができているように見えますが、CNC切削装置の加工条件の設定に結構苦戦しました。一般的にモノリス型多孔体は石膏と同じように脆いため、送り速度や切り込み量が大きくしすぎると、ボロボロと崩れてしまったり、局所的な剥離が起きてしまったりと精度の高い加工はかなり難しいです。逆に、送り速度や切り込み量が小さくしすぎると、加工に膨大な時間が必要になり現実的ではありません。この加工条件は、これまでの経験(結局ノウハウか・・・)を基に、何種類かを設定し、試行錯誤して絞り込みました。結果としては、論文で示したマルチウェルやニードルの加工には最大で8時間程度を要するので、手動での加工はなかなか骨が折れますが、そこはCNC切削装置の良いところで、ボタン一つ押せば、その後は放置していても加工ができてしまいます。また、加工品のCADデータ、CNC切削装置、素材があれば、誰でも同じように作れるという利点があるのは言うまでもありません。

Q4. 将来は化学とどう関わっていきたいですか?

私自身は機械工学がバックグラウンドですので、化学の分野に触れる機会がこれまでにはあまり多くありませんでした。今回は化学を専門とする研究者とコラボレーションをすることで、新たな再現性の高い実験手法を生み出すことができるなどとても良い経験となりました。今現在取り組んでいるメカノバイオロジーやプラズマ化学・医療の研究についても、化学を専門とする研究者の方々のご協力をいただきながら新たな現象の解明や技術の創出に繋げていきたいと思います。同時に、私たちの方からも化学の分野に情報提供を積極的に行うことで、お互いを高め合えることができればいいなぁと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は、最近声高に叫ばれている“学際研究”に流行する前から携わってきましたが、大学生・院生の間に基軸となる専門分野を持つことが重要であると最近痛いほど実感しています。ただ、専門分野(例えば化学や物理)だけを貫き通すことができる人はほんの一握りだと思います。同時に多くの分野で化学(化学だけでなく異分野の知識・経験)が必要とされている現状だと思います。化学の分野を専門として知識と経験を身につけた上で、それらを強みに他分野に怖れることなく飛び込んでもらいたいなぁと思います。学生の皆さんはそれができるだけのパワーがあるはずです。

関連リンク

  1. 東京農工大吉野大輔研究室
  2. コアシェル型ゲル
  3. 巨大ながんスフェロイドを簡単に作製できる手法を開発

研究者の略歴

名前: 吉野 大輔(よしの だいすけ)

所属:東京農工大学 大学院工学研究院 先端物理工学部門 准教授

専門:メカノバイオロジー、設計工学

略歴:
2003年 宮城県立 仙台第二高等学校 卒業
2003年4月-2006年3月 東北大学 工学部 機械知能工学科
2006年4月-2008年3月 東北大学 大学院工学研究科 博士課程前期2年の課程
2008年4月-2011年3月 東北大学 大学院工学研究科 博士課程後期3年の課程
2011年4月-2011年6月 富士フイルム株式会社 社員
2011年7月-2012年3月 東北大学 大学院医工学研究科 博士研究員
2012年4月-2017年1月 東北大学 流体科学研究所 助教
2017年2月-2019年10月 東北大学 学際科学フロンティア研究所 助教
2019年11月-現在 東京農工大学 大学院工学研究院 准教授(テニュアトラック)

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 高分子鎖デザインがもたらすポリマーサイエンスの再創造
  2. 第1回ACCELシンポジウムを聴講してきました
  3. 導電性ゲル Conducting Gels: 流れない流体に電気…
  4. 配位子保護金属クラスターを用いた近赤外―可視光変換
  5. 細孔内単分子ポリシラン鎖の特性解明
  6. 第25回ケムステVシンポ「データサイエンスが導く化学の最先端」を…
  7. 触媒表面に吸着した分子の動きと分子変換過程を可視化~分子の動きが…
  8. 鉄とヒ素から広がる夢の世界

注目情報

ピックアップ記事

  1. 化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~
  2. 有機機能性色素におけるマテリアルズ・インフォマティクスの活用とは?
  3. コロナワクチン接種の体験談【化学者のつぶやき】
  4. Callipeltosideの全合成と構造訂正
  5. タンパクの「進化分子工学」とは
  6. アコニチン (aconitine)
  7. 研究室の安全性は生産性と相反しない
  8. 第17回ケムステVシンポ『未来を拓く多彩な色素材料』を開催します!
  9. 第23回「化学結合の自在切断 ・自在構築を夢見て」侯 召民 教授
  10. 有機トリフルオロボレート塩 Organotrifluoroborate Salt

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP