[スポンサーリンク]

スポットライトリサーチ

細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドができる

[スポンサーリンク]

第276回のスポットライトリサーチは、東京農工大学大学院工学研究院 准教授の吉野 大輔(よしの だいすけ)さんにお願いしました。

吉野先生は2019年の11月から東京農工大で研究室を主催されています。機械工学を専門とされていますが、取り組む研究分野は多種多様。異分野との境界を乗り越えた研究展開が魅力的です。特に、メカノバイオロジーを中心に研究を展開されています。

今回紹介いただける内容は、超撥水材料を利用したアイデアで手軽に大サイズのがんスフェロイド(細胞凝集体)を作製する方法の報告です。アイキャッチ画像はまるでビー玉か何かにしか見えませんが、皿状のくぼみに置かれた液滴です。材料科学×機械工学をバイオロジーのイシューに応用した、まさに異分野連携のたまものですね! 本成果は、ACS Appl. Bio Mater.誌に原著論文として公開され東京農工大学からプレスリリースされています。

“CNC-Milled Superhydrophobic Macroporous Monoliths for 3D Cell Culture”
Gen Hayase, and Daisuke Yoshino,
ACS Appl. Bio Mater. 3, 4747–4750 (2020).  doi: 10.1021/acsabm.0c00719

それでは、吉野さんからのメッセージをご覧ください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

今回、私たちは球形のがん腫瘍(がんスフェロイド)を実験室で簡単に作る手法を開発しました。私たちのからだの中で発生したがん細胞は、3次元的な組織(がん;悪性腫瘍)を作るように増殖します。がん細胞は、2次元と3次元のそれぞれの培養方法で異なる特性を示すことが知られています。これまでの研究では、培養皿底面に接着させて培養したがん細胞株を用いていた(2次元培養)ため、体内の腫瘍が存在する環境を再現することは困難でした。近年では、数種類のがん細胞の3次元培養方法が開発・実用化されていますが、実験者が狙った形状や大きさのがんスフェロイドを作ることが難しく、実験の再現性の面で課題がありました。今回開発した手法によって、再現性の課題をクリアし、がんスフェロイドを“誰でも同じように作れる”ようになりました。

共同研究者の早瀬さん(本論文の筆頭・責任著者)が開発した超撥水性のモノリス型多孔体(コアシェル型ゲル)に、3D-CADで作成した3次元モデルをそのまま削り出すことができるCNC切削装置を用いて、数百µmオーダーの構造物を削り出しました。そのうちの1つが今回のスフェロイド作製に用いたマイクロウェルです(図1)。このマイクロウェルに、ゲル化して細胞の足場になるコラーゲン溶液とがん細胞を混ぜて滴下し、37 ºC、30分程度でゲル化させ、その後3〜5日間培養液に漬けて培養するだけで直径数mmサイズの巨大ながんスフェロイドが作製できます(図2)。スフェロイド作製行程は、さながらたこ焼きを作る要領です(“返し”は必要ないですが・・・)(図3)。私たちの研究グループで試してみたところ、最大で直径5 mmのがんスフェロイドが5日間で作製可能です。

図1 3D-CADで作成したマイクロウェルの加工データ(左)と撥水性材料を加工して実際に製作したマイクロウェル(右)

図2 超撥水性のマイクロウェルを用いて作成した1 mm超の乳がんスフェロイドの顕微鏡画像

図3 ゲル化したがんスフェロイドをマイクロピペットで掬って、培養液に移す様子

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

「誰でも同じように作れる」という点を大事にしました。スフェロイドの培養は、時間がかかる上に、狙った形状、大きさに作るのが難しい印象がありました。実際に市販のキット・試薬を用いてスフェロイド作製を試みても、大きくきれいな球形に作ることは至難の技で、潰れた円盤形状になってしまいます。研究室ごとの秘伝のノウハウに頼った経験的な実験手法では、新たに取り組もうとする研究者や時間の限られた学生にとっては敷居の高いテーマになり、研究の進展や多様性の確保に影響が出るように感じました。また、自身の研究室においても、ノウハウとして確立しなければ再現性を確保することが難しい事態になってしまう恐れがあります。先輩の実験結果が再現できない・・・そんな恐怖の事態は事前に回避する必要があります。

誰でも同じように(短期間で)スフェロイドが作れる方法はないものかと考えながら、たまたま通った大好物のたこ焼き屋の前で職人さんがたこ焼きを作っている様子を見て、閃いたわけです。たこ焼きは職人さんが変わっても同じ大きさだ。早瀬さんが開発した超撥水性のモノリス型多孔体にたこ焼き鉄(銅)板状の溝を彫ればうまく球形を保持できるのではないかと思いつきました。最初は半球状に溝を掘って試してみましたが、作ったスフェロイドをうまく掬えないという問題が生じました。試行錯誤を繰り返した結果、現在のお皿状の溝を彫ったマルチウェルが完成しました。後で気づきましたが(早瀬さんは最初から気づいていたようですが)、単に溝を彫った超撥水性モノリス型多孔体をひっくり返して培養液にスフェロイドを落としてやれば、半球状の溝でもよかったようです、笑

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

いざ論文になってしまうと簡単に加工ができているように見えますが、CNC切削装置の加工条件の設定に結構苦戦しました。一般的にモノリス型多孔体は石膏と同じように脆いため、送り速度や切り込み量が大きくしすぎると、ボロボロと崩れてしまったり、局所的な剥離が起きてしまったりと精度の高い加工はかなり難しいです。逆に、送り速度や切り込み量が小さくしすぎると、加工に膨大な時間が必要になり現実的ではありません。この加工条件は、これまでの経験(結局ノウハウか・・・)を基に、何種類かを設定し、試行錯誤して絞り込みました。結果としては、論文で示したマルチウェルやニードルの加工には最大で8時間程度を要するので、手動での加工はなかなか骨が折れますが、そこはCNC切削装置の良いところで、ボタン一つ押せば、その後は放置していても加工ができてしまいます。また、加工品のCADデータ、CNC切削装置、素材があれば、誰でも同じように作れるという利点があるのは言うまでもありません。

Q4. 将来は化学とどう関わっていきたいですか?

私自身は機械工学がバックグラウンドですので、化学の分野に触れる機会がこれまでにはあまり多くありませんでした。今回は化学を専門とする研究者とコラボレーションをすることで、新たな再現性の高い実験手法を生み出すことができるなどとても良い経験となりました。今現在取り組んでいるメカノバイオロジーやプラズマ化学・医療の研究についても、化学を専門とする研究者の方々のご協力をいただきながら新たな現象の解明や技術の創出に繋げていきたいと思います。同時に、私たちの方からも化学の分野に情報提供を積極的に行うことで、お互いを高め合えることができればいいなぁと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は、最近声高に叫ばれている“学際研究”に流行する前から携わってきましたが、大学生・院生の間に基軸となる専門分野を持つことが重要であると最近痛いほど実感しています。ただ、専門分野(例えば化学や物理)だけを貫き通すことができる人はほんの一握りだと思います。同時に多くの分野で化学(化学だけでなく異分野の知識・経験)が必要とされている現状だと思います。化学の分野を専門として知識と経験を身につけた上で、それらを強みに他分野に怖れることなく飛び込んでもらいたいなぁと思います。学生の皆さんはそれができるだけのパワーがあるはずです。

関連リンク

  1. 東京農工大吉野大輔研究室
  2. コアシェル型ゲル
  3. 巨大ながんスフェロイドを簡単に作製できる手法を開発

研究者の略歴

名前: 吉野 大輔(よしの だいすけ)

所属:東京農工大学 大学院工学研究院 先端物理工学部門 准教授

専門:メカノバイオロジー、設計工学

略歴:
2003年 宮城県立 仙台第二高等学校 卒業
2003年4月-2006年3月 東北大学 工学部 機械知能工学科
2006年4月-2008年3月 東北大学 大学院工学研究科 博士課程前期2年の課程
2008年4月-2011年3月 東北大学 大学院工学研究科 博士課程後期3年の課程
2011年4月-2011年6月 富士フイルム株式会社 社員
2011年7月-2012年3月 東北大学 大学院医工学研究科 博士研究員
2012年4月-2017年1月 東北大学 流体科学研究所 助教
2017年2月-2019年10月 東北大学 学際科学フロンティア研究所 助教
2019年11月-現在 東京農工大学 大学院工学研究院 准教授(テニュアトラック)

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 【9月開催】第1回 マツモトファインケミカル技術セミナー 有機チ…
  2. 薬学部6年制の現状と未来
  3. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  4. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  5. アメリカ企業研究員の生活③:新入社員の採用プロセス
  6. MEDCHEM NEWS 32-1号「機械学習とロボティックス特…
  7. 複数のねじれを持つ芳香族ベルトの不斉合成と構造解析に成功
  8. “click”の先に

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第158回―「導電性・光学特性を備える超分子らせん材料の創製」Narcis Avarvari教授
  2. ゴードン会議に参加して:ボストン周辺滞在記 Part II
  3. アルケンのE/Zをわける
  4. 新しい2-エキソメチレン型擬複合糖質を開発 ~触媒的な合成法確立と生物活性分子としての有用性の実証に成功~
  5. 材料研究分野で挑戦、“ゆりかごから墓場まで”データフル活用の効果
  6. 有機合成化学協会誌2022年6月号:プラスチック変換・生体分子変換・ラジカル反応・ガタスタチンG2・オリゴシラン・縮環ポルフィリン誘導体
  7. 有機合成化学協会誌2018年1月号:光学活性イミダゾリジン含有ピンサー金属錯体・直截カルコゲン化・インジウム触媒・曲面π構造・タンパク質チオエステル合成
  8. ジャンフェン・カイ Jianfeng Cai
  9. 星本 陽一 Yoichi Hoshimoto
  10. マテリアルズ・インフォマティクスにおけるデータの前処理-データ整理・把握や化学構造のSMILES変換のやり方を解説-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―

第580回のスポットライトリサーチは京都大学大学院工学研究科物質エネルギー化学専攻 陰山研究室の難波…

2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 ~感覚の世界に化学はどう挑むか~」

人間の幸福感は、五感に依るところが大きい。化学は文明的で健康的な社会を支える物質を継続的に産み出して…

超難溶性ポリマーを水溶化するナノカプセル

第579回のスポットライトリサーチは東京工業大学 化学生命科学研究所 吉沢・澤田研究室の青山 慎治(…

目指せ抗がん剤!光と転位でインドールの(逆)プレニル化

可視光レドックス触媒を用いた、インドール誘導体のジアステレオ選択的な脱芳香族的C3位プレニル化および…

マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?

開催日:2023/11/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP