[スポンサーリンク]

一般的な話題

質量分析で使うRMS errorって?

[スポンサーリンク]

 

質量分析計のカタログを手にした時、スペックシートには装置の仕様が沢山記載されています。その中で、装置がどれだけ理想的な設計になっているのか示す用語のひとつに「質量精度」と「質量確度」があります。しかしながら実際に記載されているのはたとえば「3 ppm RMS using external calibration」のようなRMSを使った用語です。なぜRMSを使う必要があるのでしょうか?そもそもRMSって?

今回は装置の「質量精度」「質量確度」「RMS error」について説明いたします。

*このつぶやきは「第151回質量分析関西談話会・第5回質量分析中部談話会」での筆者による講演内容を編集し公開しています。

 

1.先ずは用語(分解能・質量確度・質量精度)の説明を

この中で質量確度と質量精度は間違えて使われることが多いので要注意です。そもそも「質量確度が高い質量分析計」って言われてもピンとこない方もいるのではないでしょうか。

 

分解能は近接した二本のピークを分離する能力を示します。分解能の表記方法にはFWHM(full width at half-height maximum)法と10%谷法の2つがありますが、近年よく使われているFWHM法で表すと図1にようになります(文献1および2参照し作成)。大雑把な言い方をすると、ピークが細くなると分解能が高くなるってわけですね。分解能は装置の種類によって異なり、飛行時間型質量分析計のリフテクトロンモードだと(質量域にも依存しますが)数万ぐらいです。

 

図1

図1(文献1および2を参照し作成)

さて、つぎは質量確度です。英語で言うとaccuracyですがこれは真値からのずれを示します。計算式は図1に記載しているように質量確度が高い装置ほど真値からのずれが小さいと言えます。なお、図2に示すように複数回数測定した場合の質量確度は、真値から測定値の平均値をさし位引いた値の絶対値表記になっています(文献3参照)。

 

図2(文献2から抜粋)

図2(文献3の図1(a)を使用)

 

これに対して質量精度(precision)は図3に表すように再現性(ばらつき)を意味し、測定値の標準偏差で表します(文献2参照)。

 

図3

図3(文献1および2を参照し作成)

 

2.RMS errorって?

さて、質量分析計のカタログ(図4, ここ)に、見慣れない用語があります。

 

図4

図4

 

拡大したのが図5です。

 

図5

図5

 

この説明では、

OTMS (orbitrap型質量分析計)の質量確度を示しており、

外部較正法(*1)を使うと3 ppm RMSより小さく

内部較正法(*2)を使うと1 ppm RMSより小さい

誤差しか生じませんよ。と示しています。この質量確度はたとえば24時間以内で維持しうるとかメーカーの方から聞きますから、測定の再現性を意味していると予想されます。したがって2つの疑問がでてきました。

疑問①:RMSを使った質量確度の記載は、質量確度と質量精度の両方の要素を含んでいるのでは?

疑問②:「質量精度」「質量確度」ではなく何故RMSを使う必要があるのか?

そこでまずは疑問①についてメーカーの方に聞いてみました(図6)。

 

図6

図6

 

どうやらRMS errorという言葉は「質量確度」と「質量精度」の両方の要素を含んでいることは正しいようです。では、RMS errorはどうやって算出されるのか調べてみました(図7)(文献3参照)。

 

図7

図7(文献3の文中から抜粋し使用)

 

RMS errorと標準偏差はぱっと見たところ似たような数式ですが、よく見てみると、足し合わす測定値が、RMS errorの場合測定誤差であるのに対し、標準偏差(測定精度)では平均値からのずれです。測定誤差とは真値からのずれ、すなわち測定確度です。このように数式を見比べることによりRMS errorは「測定確度」と「測定精度」の両方の要素を含んだ用語であることがわかりました。

 

では、疑問②の「何故RMSを使う必要があるのか?」です。実際の測定データで考えていきます。

 

図8

図8

 

図8の測定例1は小麦抽出液中のカビ毒(アフラトキシンG2)の測定値からの質量確度(外部較正法)をプロットしたものです。5日間に渡り900回測定しています。大雑把に言うと、この測定の場合「質量精度≒RMS error」と言えるでしょう。比較としてもう一つの測定例を見てください。

 

図9

図9

 

図9の測定例2はポリシロキサンの測定値からの質量確度(外部較正法)をプロットしたものです。質量校正を行ってから2時間おきに、合計14時間、8回測定しています。この測定の場合「質量精度<RMS error」と言えます。なお、この測定は筆者が使用しているLC-MSで行いました。

測定例1と測定例2はどちらも外部較正法で測定しておりますが、測定例1と比べて測定例2は質量確度が低いです。使っている装置と測定環境が異なっているから、でしょうか。

 

「質量確度」「質量精度」「RMS error」のまとめ

 

図10

図10(文献3の図1(b)を使用)

 

図10は計算値が400.0000のイオンを9回測定した精密質量測定のプロットです(文献3参照)。図中のi)は測定例1のケースを示しており、質量確度および質量精度が高い理想的なケースです。図中のiii)は測定例2のケースを示しており、質量精度は高いのですが質量確度が低いです。したがって、「質量確度」と「質量精度」の両方の要素を含むRMS errorで装置性能を評価する必要があることがわかりました。

 

昨今の高分解能質量分析計(TOF型、orbitrap型、FT-ICR型等)のカタログには、RMS errorが2 ppmなど高性能ぶりが記載されていることが多いです。装置性能を維持できるような環境に装置を設置すると、装置は研究に役立つデータを出しやすくなります。測定の成否は測定の目的、測定するサンプルの精製度合いなどにも大きく依存しますので一概には言えませんが、なにせ高性能で高価な装置ですので購入後も引き続き大切にそしてフルに活躍してほしいと筆者は願っております。

 

(参考文献)

  1. 山本慎也,中山泰宗,福崎英一郎:生物工学会誌、91, 2, 101-104 (2013)
  2. J. H. Gross:マススペクトロメトリー,丸善出版
  3. A. Gareth Brenton and A. Ruth Godfrey: J. Am. Soc. Mass Spectrom., 21, 1821-1835 (2010)

(*1)外部較正法とは、質量較正物質を用いてあらかじめ質量較正を行った後に、この質量較正結果に基づき質量を求めていく方法(日本電子株式会社質量分析データ集Vol.2より)。

(*2)内部較正法とは、測定対象の試料に質量較正物質を加え、試料と共に測定したのち、質量較正物質のm/z値から質量補正を行うことで、試料のm/z値の計測を行う方法(日本質量分析学会用語委員会編「マススペクトロメトリー関係用語集第3版(WWW版)」より)。装置温度の変化など、m/z値に影響を及ぼす要因を小さくすることができる。

 

関連書籍

[amazonjs asin=”4621061631″ locale=”JP” title=”マススペクトロメトリー”]
Avatar photo

msc

投稿者の記事一覧

質量分析計を使ったメソッド研究開発、国内外の研究者との共同研究および受託分析(実験計画からデータ解析まで)を行なっております。測定対象は、タンパク質同定およびLC-MSによる分析を中心に、水素-重水素交換質量分析(HDX-MS)、MALDI-TOFによる分析等幅広く扱っています。ITbMでは、トランスフォーマティブ分子の機能構造解析(プロテオミクス によるターゲットID、構造解析等)をITbMグループと共同で進めています。詳細はURLをご覧ください。

関連記事

  1. 創薬におけるPAINSとしての三環性テトラヒドロキノリン類
  2. 荷電π電子系の近接積層に起因した電子・光物性の制御
  3. ポンコツ博士の海外奮闘録XVIII ~博士,WBCを観る~
  4. 準結晶的なナノパーティクルスーパーラティス
  5. 嗚呼、美しい高分子の世界
  6. 合成化学発・企業とアカデミアの新たな共同研究モデル
  7. 単一分子を検出可能な5色の高光度化学発光タンパク質の開発
  8. 産学それぞれの立場におけるマテリアルズ・インフォマティクス技術活…

注目情報

ピックアップ記事

  1. 細胞代謝学術セミナー全3回 主催:同仁化学研究所
  2. 第24回「アルキル-πエンジニアリングによる分子材料創成」中西尚志 博士
  3. Classics in Total Synthesis
  4. 室温で液状のフラーレン
  5. 配位子で保護された金クラスターの結合階層性の解明
  6. 有機レドックスフロー電池 (ORFB)の新展開:高分子を活物質に使う
  7. 論文引用ランキングから見る、化学界の世界的潮流
  8. 第18回 出版業務が天職 – Catherine Goodman
  9. 実験器具・設備の価格を知っておきましょう
  10. ファヴォルスキー転位 Favorskii Rearrangement

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ

2024年10月9日、スウェーデン王立科学アカデミーは、2024年のノーベル化学賞を発表しました。今…

デミス・ハサビス Demis Hassabis

デミス・ハサビス(Demis Hassabis 1976年7月27日 北ロンドン生まれ) はイギリス…

【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

概要これまで化学は,解析と合成を両輪とし理論・実験を行き来しつつ発展し,さまざまな物質を提供…

有機合成化学協会誌2024年10月号:炭素-水素結合変換反応・脱芳香族的官能基化・ピクロトキサン型セスキテルペン・近赤外光反応制御・Benzimidazoline

有機合成化学協会が発行する有機合成化学協会誌、2024年10月号がオンライン公開されています。…

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP