[スポンサーリンク]

化学者のつぶやき

酵母菌に小さなソーラーパネル

[スポンサーリンク]

Harvard大学のNeel S. Joshi教授らは、光合成を行わない微生物に光増感剤を担持することで、細胞内の代謝反応を光で駆動することに成功しました(トップ画像出展・改変:Wyss Institute at Harvard University。)。

“Light-driven fine chemical production in yeast biohybrids”

Guo, J.; Suástegui, M.; Sakimoto, K. K.; Moody, V. M.; Xiao, G.; Nocera, D. G.; Joshi, N. S. Science 2018, 362, 813. (DOI: 10.1126/science.aat9777)

(本記事のタイトルは、Science Newsの記事をもとにしています。)

1. 生物は外からエネルギーを取り込み、有機物を合成する

図1.  (a) 光からエネルギーを得る植物。(b) 有機物からエネルギーを得る動物。

植物は、光のエネルギーを受け取って電子を生み、その電子を利用して有機物を合成しています(図1a)。一方で、ヒトや動物、微生物の多くには光を取り込む機能はありません。それなので、外部から取り込んだ有機物から電子を受け取り、その電子を利用して別の有機物を作っています(図1b)。

ところが今回、Harvard大学のNeel S. Joshi教授らは、インジウムリン(InP)のナノ粒子を用いて光エネルギーを捕集し、そのエネルギーを細胞に受け渡すことで、光合成を行わない酵母菌の代謝反応を、光で駆動できることを示しました (図2)。

図2.  InPナノ粒子による光の捕捉と酵母細胞内のNADPH合成反応。

2. シキミ酸合成には、NADPHが必要

Joshi教授らが用いた微生物は、パンやビールなどの発酵過程で用いられる酵母(Saccharomyces cerevisiae)です。近年では、酵母の遺伝子を改変して、薬などに有用な化合物を作らせるバイオトランスフォーメーションの研究も盛んになされています。例えば、シキミ酸という化合物(図3)は、インフルエンザ治療薬タミフルなどの原料となるため、酵母のシキミ酸合成経路を改良して大量合成させるといった取り組みがなされています。しかしながら、どんなに目的化合物の収量を上げようとしても、代謝に使えるエネルギー(電子)には限りがあるため、細胞を害することなく目的化合物を大量に作らせることは困難です。細胞内で、電子供与体のNADPHという分子が不足してしまい、反応が行えなくなります。

図3. シキミ酸の生合成反応の最終段階。NADPHからDHSに電子が与えられる。

3. 光増感剤を利用した光エネルギーの捕集

そこでJoshi教授らは、光増感剤(photosensitizerを利用して、細胞内に外部から電子を供給する方法を考えました。光増感剤というのは、光を吸収してエネルギーを得、そのエネルギーを他の物質へと与える物質のことです。彼らは、光増感剤のインジウムリン(InP)ナノ粒子を酵母の細胞表面に担持することで、InPナノ粒子が吸収したエネルギーが細胞内へと伝えられ、NADPHを再生産できるようにしました(図4)。

図4. 光増感剤の半導体InPナノ粒子。細胞上に担持するため、ポリフェノールで被覆されている。

4. 光エネルギーにより、シキミ酸の生産量が増大

彼らは、InPナノ粒子を担持した酵母細胞に光を当て、シキミ酸の生産量を調べました。図5aは、酵母細胞に光を当てた場合(light)と光を当てなかった場合(dark)における、シキミ酸とDHSの生産量を示しています。光照射がありかつInP粒子が担持されている細胞では、光照射やInPナノ粒子がない細胞と比べ、シキミ酸の生産量が大幅に増えていることが分かります。また、シキミ酸/DHS比を元に、細胞内のNADPH/NADP+比を求めることもできます。図5bに見られるように、光照射した場合には、NADPH/NADP+比が87%にもなっており、これは光を当てなかった場合の27です。このような実験から、外部から与えた光エネルギーがInP粒子を介して細胞内へと伝えられ、細胞内のNADPHの量を増大させることが示されました。

図5. (a) 光照射/非照射下におけるシキミ酸とDHSの生産量。(b) 光照射/非照射下におけるNADPH/NADP+比。用いられた酵母菌(Δzwf1)は、ペントースリン酸経路(pentose phosphate pathway)の遺伝子を欠損しているため、酵母自身によるNADPHの生産が抑えられている。(図は論文より)

5. 細胞の炭素利用の変化

それでは、InPナノ粒子の光捕捉は、細胞全体の炭素利用にどう影響を与えているのでしょうか。彼らは、細胞で作られる他の有機物の生産量を、シキミ酸の生産量と同時に計測しました。図6aは、エタノールとグリセロールの生産量を、光照射時と非照射の比で示しています。光を照射すると、シキミ酸の生産量は増える(青色)のに対し、エタノールやグリセロールの生産量は減少(赤色)していることが分かります。エタノールやグリセロールの生合成過程では、NADP+からNADPHが生産されますが、光照射下ではInPナノ粒子からのエネルギーがNADPHをNADP+に変えるため、エタノールやグリセロールの生産が抑えられているのだと考えられます(図6b)。

図6. (a) エタノールやグリセロールの生産量変化。光照射時と光非照射時の比を示す。(論文より) (b) 光照射/非照射下における炭素の流れ。

6. おわりに

本研究は、光合成ができない酵母菌に対してでも、外から光エネルギーを供給できる画期的な技術です。InPナノ粒子で生じた励起電子が、どうやって細胞壁を通り抜け、細胞質内のNADPHに受け渡されるのかについては、まだ未解明とのことですが、酵母以外の生物でも同様に電子の受け取りができるのか、NADPH以外の電子受容体の量には影響があるのかどうかなど、今後さらに研究が進められることが期待されます。

参考文献

  1. Sakimoto, K. K.; Wong, A. B.; Yang, P. Science 2016, 351, 74. DOI: 10.1126/science.aad3317
  2. Suástegui. M.; Yu, N. C.; Chowdhury, A.; Sun, W.; Cao, M.; House, E.; Maranas, C. D.; Shao, Z. Metab. Eng. 2017, 42, 134. DOI: 10.1016/j.ymben.2017.06.008.

関連リンク

関連書籍

kanako

投稿者の記事一覧

アメリカの製薬企業の研究員。抗体をベースにした薬の開発を行なっている。
就職前は、アメリカの大学院にて化学のPhDを取得。専門はタンパク工学・ケミカルバイオロジー・高分子化学。

関連記事

  1. 血液型をChemistryしてみよう!
  2. 栄養素取込、ミトコンドリア、菌学術セミナー 主催:同仁化学研究所…
  3. ケムステV年末ライブ2021開催報告! 〜今年の分子 and 人…
  4. 水を還元剤とする電気化学的な環境調和型還元反応の開発:化学産業の…
  5. ケムステV年末ライブ2023を開催します!
  6. 有機合成化学協会誌2024年2月号:タンデムボラFriedel-…
  7. 「低分子医薬品とタンパク質の相互作用の研究」Harvard大学 …
  8. 転職を成功させる「人たらし」から学ぶ3つのポイント

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 炭素置換Alアニオンの合成と性質の解明
  2. 「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた
  3. 【速報】Mac OS X Lionにアップグレードしてみた
  4. ポリアクリル酸ナトリウム Sodium polyacrylate
  5. 化学オリンピックを通して考える日本の理科教育
  6. ブートキャンプ
  7. LG化学がグローバルイノベーションコンテストを開催へ
  8. 相次ぐ”業務用洗剤”による事故
  9. クレイグ・ホーカー Craig J. Hawker
  10. 複雑な生化学反応の条件検討に最適! マイクロ流体技術を使った新手法

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年12月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP