[スポンサーリンク]

化学者のつぶやき

可視光増感型電子移動機構に基づく強還元触媒系の構築

[スポンサーリンク]

2017年、レーゲンスブルク大学・Burkhard Königらは、光触媒から可視光増感型電子移動機構 (Sensitization-Initiated Electron Transfer, SenI-ET) によって生じる多環性芳香族炭化水素 (PAH)ラジカルアニオンを活用し、従来の光触媒では難しかった高い還元ポテンシャルを示す触媒系の構築に成功した。

“Sensitization-Initiated Electron Transfer for Photoredox Catalysis”
Ghosh, I.; Shaikh, R. S.; König, B.* Angew. Chem. Int. Ed. 2017, 56, 8544–8549. doi:10.1002/anie.201703004

問題設定

光合成系は光エネルギーを化学的な自由エネルギーへと変換して活用している。この時に光エネルギーは、アンテナ色素(クロロフィルb、βカロテン等)によって取り込まれ、反応中心色素(クロロフィルa 等)へと送られ、光合成反応を進行させることが知られている。この2分子による仕組みが、光エネルギーから酸化還元力への効率的変換を可能としている。
有機合成分野でも可視光レドックス触媒は急速な進展を見せているが、光触媒分子自身に光子の吸収・変換を頼っている。この場合、典型的な光触媒で実現できる還元ポテンシャルには上限があり、必然として応用範囲にも制限があった。

技術や手法のキモ

今回Königらは、自然界の光合成システムから着想を得て、光吸収分子によって光エネルギーを取り込み、それを別の高還元力分子へと移送させる触媒系の確立を目指した研究に取り組んだ。

上記の典型photoredox系にて、 Ru(bpy)32+単独で実現可能な還元ポテンシャルは-1.33V以上にならない。一方、芳香族多環性炭化水素(PAHs)は可視光を吸収しないが、高い還元ポテンシャルを持つことが知られている(例:ピレンの還元ポテンシャル=-2.1V vs SCE)。Ru(bpy)32+を可視光増感剤、三重項エネルギーアクセプターとしてPAHsを用いる系が組めれば、その縛りを超えられると考えた。

主張の有効性検証

①適したPAHsの同定

Ru(bpy)32+からエネルギー移動が速やかに起こるPAHsを同定すべく、消光実験を行なった。すると、ピレン、アントラセン、9,10-ジフェニルアントラセンなどと混合したときに濃度依存的な消光が起きることが確認された。この消光過程は、励起Ru種が還元剤(N,N-ジイソプロピルエチルアミン, DIPEA)から1電子還元されるより、少なくとも1オーダー以上速い。
一方で、高すぎるtriplet energyを持つナフタレンやトリフェニレンでは、効果的な消光が起こらなかった。

②アリールラジカル生成法への応用

臭化アリールの1電子還元によってアリールラジカルが生成し、これが電子豊富芳香環でトラップされる反応をベンチマークとしている。上記検討から見いだされたPAHsのうち、優れた還元ポテンシャルをもつピレンを選択し、下記条件を用いて反応を行なっている。緑色光(525 nm)でも反応は進行するが、長時間を要する。


臭化アリールのなかでも還元ポテンシャルが高いものは反応しない(例えばインドール5位のBrは残る)。基質によっては塩化アリールやアリールトリフラートでも実施可能。亜リン酸エステルと反応させることで、photo-Arbuzov反応への展開も可能。

競合する副反応として、アリールラジカルによるDIEA・+やDMSOからの水素引き抜きが確認されている(ベンゼンがGCやGCMSで検出される)。

議論すべき点

  • 詳細な機構に関してはcontroversialのようである。著者らは本論文で、3重項Ruが3重項PAHを生成し、これがDIPEAから1電子還元を受け、PAHラジカルアニオンが生成するという上記機構を提唱している。一方のBalzaniらは、3重項ピレンへの電子供与がuphillのため、3重項ピレン―3重項ピレンから1重項ピレンが生成する機構を提唱している[1]。これに対して著者らはさらに反論を加えており[2]、Balzaniらの考えも1つであると認めつつも、現時点では詳細の解明は困難となっている。

  • 今回のような可視光増感系の知見が溜まってくれば、これまでUV照射のみで検討されていた反応も可視光系へ転換していく視点が築かれる。インパクトは大きい。

参考文献

  1. Marchini, M.; Bergamini, G.; Cozzi, P. G.; Ceroni, P.; Balzani, V. Angew.Chem. Int. Ed. 2017, 56,12820–12821. doi:10.1002/anie.201706217
  2. Ghosh, I.; Bardagi, J. I.; König, B. Angew.Chem. Int. Ed. 2017, 56, 12822–12824. doi:10.1002/anie.201707594

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ケムステイブニングミキサー2016を終えて
  2. SNSコンテスト企画『集まれ、みんなのラボのDIY!』
  3. Dead Endを回避せよ!「全合成・極限からの一手」④
  4. 細胞が分子の3Dプリンターに?! -空気に触れるとファイバーとな…
  5. フリー素材の化学イラストを使ってみよう!
  6. ルドルフ・クラウジウスのこと② エントロピー150周年を祝って
  7. 鉄カルベン活性種を用いるsp3 C-Hアルキル化
  8. 有機合成化学協会誌2022年8月号:二酸化炭素・アリル銅中間体・…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 位置選択性の制御が可能なスチレンのヒドロアリール化
  2. スタンリー・ウィッティンガム M. S. Whittingham
  3. グリニャール反応 Grignard Reaction
  4. 有機合成化学協会誌2023年5月号:特集号「日本の誇るハロゲン資源: ハロゲンの反応と機能」
  5. ルボトム酸化 Rubottom Oxidation
  6. C–H活性化反応ーChemical Times特集より
  7. DIC岡里帆の新作CMが公開
  8. 1-ヒドロキシタキシニンの不斉全合成
  9. 伯東、高機能高分子材料「デンドリマー」、製造期間10分の1に
  10. 個性あるジャーナル表紙

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP