[スポンサーリンク]

化学者のつぶやき

可視光増感型電子移動機構に基づく強還元触媒系の構築

[スポンサーリンク]

2017年、レーゲンスブルク大学・Burkhard Königらは、光触媒から可視光増感型電子移動機構 (Sensitization-Initiated Electron Transfer, SenI-ET) によって生じる多環性芳香族炭化水素 (PAH)ラジカルアニオンを活用し、従来の光触媒では難しかった高い還元ポテンシャルを示す触媒系の構築に成功した。

“Sensitization-Initiated Electron Transfer for Photoredox Catalysis”
Ghosh, I.; Shaikh, R. S.; König, B.* Angew. Chem. Int. Ed. 2017, 56, 8544–8549. doi:10.1002/anie.201703004

問題設定

光合成系は光エネルギーを化学的な自由エネルギーへと変換して活用している。この時に光エネルギーは、アンテナ色素(クロロフィルb、βカロテン等)によって取り込まれ、反応中心色素(クロロフィルa 等)へと送られ、光合成反応を進行させることが知られている。この2分子による仕組みが、光エネルギーから酸化還元力への効率的変換を可能としている。
有機合成分野でも可視光レドックス触媒は急速な進展を見せているが、光触媒分子自身に光子の吸収・変換を頼っている。この場合、典型的な光触媒で実現できる還元ポテンシャルには上限があり、必然として応用範囲にも制限があった。

技術や手法のキモ

今回Königらは、自然界の光合成システムから着想を得て、光吸収分子によって光エネルギーを取り込み、それを別の高還元力分子へと移送させる触媒系の確立を目指した研究に取り組んだ。

上記の典型photoredox系にて、 Ru(bpy)32+単独で実現可能な還元ポテンシャルは-1.33V以上にならない。一方、芳香族多環性炭化水素(PAHs)は可視光を吸収しないが、高い還元ポテンシャルを持つことが知られている(例:ピレンの還元ポテンシャル=-2.1V vs SCE)。Ru(bpy)32+を可視光増感剤、三重項エネルギーアクセプターとしてPAHsを用いる系が組めれば、その縛りを超えられると考えた。

主張の有効性検証

①適したPAHsの同定

Ru(bpy)32+からエネルギー移動が速やかに起こるPAHsを同定すべく、消光実験を行なった。すると、ピレン、アントラセン、9,10-ジフェニルアントラセンなどと混合したときに濃度依存的な消光が起きることが確認された。この消光過程は、励起Ru種が還元剤(N,N-ジイソプロピルエチルアミン, DIPEA)から1電子還元されるより、少なくとも1オーダー以上速い。
一方で、高すぎるtriplet energyを持つナフタレンやトリフェニレンでは、効果的な消光が起こらなかった。

②アリールラジカル生成法への応用

臭化アリールの1電子還元によってアリールラジカルが生成し、これが電子豊富芳香環でトラップされる反応をベンチマークとしている。上記検討から見いだされたPAHsのうち、優れた還元ポテンシャルをもつピレンを選択し、下記条件を用いて反応を行なっている。緑色光(525 nm)でも反応は進行するが、長時間を要する。


臭化アリールのなかでも還元ポテンシャルが高いものは反応しない(例えばインドール5位のBrは残る)。基質によっては塩化アリールやアリールトリフラートでも実施可能。亜リン酸エステルと反応させることで、photo-Arbuzov反応への展開も可能。

競合する副反応として、アリールラジカルによるDIEA・+やDMSOからの水素引き抜きが確認されている(ベンゼンがGCやGCMSで検出される)。

議論すべき点

  • 詳細な機構に関してはcontroversialのようである。著者らは本論文で、3重項Ruが3重項PAHを生成し、これがDIPEAから1電子還元を受け、PAHラジカルアニオンが生成するという上記機構を提唱している。一方のBalzaniらは、3重項ピレンへの電子供与がuphillのため、3重項ピレン―3重項ピレンから1重項ピレンが生成する機構を提唱している[1]。これに対して著者らはさらに反論を加えており[2]、Balzaniらの考えも1つであると認めつつも、現時点では詳細の解明は困難となっている。

  • 今回のような可視光増感系の知見が溜まってくれば、これまでUV照射のみで検討されていた反応も可視光系へ転換していく視点が築かれる。インパクトは大きい。

参考文献

  1. Marchini, M.; Bergamini, G.; Cozzi, P. G.; Ceroni, P.; Balzani, V. Angew.Chem. Int. Ed. 2017, 56,12820–12821. doi:10.1002/anie.201706217
  2. Ghosh, I.; Bardagi, J. I.; König, B. Angew.Chem. Int. Ed. 2017, 56, 12822–12824. doi:10.1002/anie.201707594
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アンモニアを窒素へ変換する触媒
  2. 光刺激に応答して形状を変化させる高分子の合成
  3. 死刑囚によるVXガスに関する論文が掲載される
  4. 172番元素までの周期表が提案される
  5. 最近の金事情
  6. 連鎖と逐次重合が同時に起こる?
  7. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…
  8. 【速報】2016年ノーベル化学賞は「分子マシンの設計と合成」に!…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. フリードリヒ・ヴェーラー Friedrich Wohler
  2. 味の素ファインテクノの技術と社会貢献
  3. 日本ビュッヒ「Cartridger」:カラムを均一・高効率で作成
  4. 総合化学4社、最高益を更新 製造業の需要高く
  5. カーボン系固体酸触媒
  6. 芳香環のハロゲン化 Halogenation of Aromatic Ring
  7. 細胞を模倣したコンピューター制御可能なリアクター
  8. 「アバスチン」臨床試験中間解析を公表 中外製薬
  9. 秋山隆彦 Takahiko Akiyama
  10. 生体分子を活用した新しい人工光合成材料の開発

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

医療用酸素と工業用酸素の違い

 スズキは29日、インドにある3工場の生産を一時停止すると明らかにした。インドでは新型コロナウイルス…

世界初のジアゾフリーキラル銀カルベン発生法の開発と活性化されていないベンゼノイドの脱芳香族化反応への応用

第310回のスポットライトリサーチは、千葉大学大学院医学薬学府 (根本研究室)・伊藤 翼さんにお願い…

キムワイプをつくった会社 ~キンバリー・クラーク社について~

Tshozoです。本件先日掲載されたこちらのArticleの追っかけでネタ色が強いですが書いてみるこ…

Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow

In multistep continuous flow chemistry, studying c…

三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立てる!

第309回のスポットライトリサーチは、木村舜 博士にお願いしました。金属と有機配位子がネット…

第148回―「フッ素に関わる遷移金属錯体の研究」Graham Saunders准教授

第148回の海外化学者インタビューは、グラハム・サウンダース准教授です。ニュージーランドのハミルトン…

ケムステチャンネルをチャンネル登録しませんか?

5月11日で化学の情報サイトケムステは開設21周年を迎えます。これまで記事中心の活動を行ってきました…

化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編

前回の化学研究で役に立つデータ解析入門:回帰分析の応用編では、Rを使ってエクセルにはできない回帰分析…

Chem-Station Twitter

PAGE TOP