[スポンサーリンク]

化学者のつぶやき

可視光増感型電子移動機構に基づく強還元触媒系の構築

[スポンサーリンク]

2017年、レーゲンスブルク大学・Burkhard Königらは、光触媒から可視光増感型電子移動機構 (Sensitization-Initiated Electron Transfer, SenI-ET) によって生じる多環性芳香族炭化水素 (PAH)ラジカルアニオンを活用し、従来の光触媒では難しかった高い還元ポテンシャルを示す触媒系の構築に成功した。

“Sensitization-Initiated Electron Transfer for Photoredox Catalysis”
Ghosh, I.; Shaikh, R. S.; König, B.* Angew. Chem. Int. Ed. 2017, 56, 8544–8549. doi:10.1002/anie.201703004

問題設定

光合成系は光エネルギーを化学的な自由エネルギーへと変換して活用している。この時に光エネルギーは、アンテナ色素(クロロフィルb、βカロテン等)によって取り込まれ、反応中心色素(クロロフィルa 等)へと送られ、光合成反応を進行させることが知られている。この2分子による仕組みが、光エネルギーから酸化還元力への効率的変換を可能としている。
有機合成分野でも可視光レドックス触媒は急速な進展を見せているが、光触媒分子自身に光子の吸収・変換を頼っている。この場合、典型的な光触媒で実現できる還元ポテンシャルには上限があり、必然として応用範囲にも制限があった。

技術や手法のキモ

今回Königらは、自然界の光合成システムから着想を得て、光吸収分子によって光エネルギーを取り込み、それを別の高還元力分子へと移送させる触媒系の確立を目指した研究に取り組んだ。

上記の典型photoredox系にて、 Ru(bpy)32+単独で実現可能な還元ポテンシャルは-1.33V以上にならない。一方、芳香族多環性炭化水素(PAHs)は可視光を吸収しないが、高い還元ポテンシャルを持つことが知られている(例:ピレンの還元ポテンシャル=-2.1V vs SCE)。Ru(bpy)32+を可視光増感剤、三重項エネルギーアクセプターとしてPAHsを用いる系が組めれば、その縛りを超えられると考えた。

主張の有効性検証

①適したPAHsの同定

Ru(bpy)32+からエネルギー移動が速やかに起こるPAHsを同定すべく、消光実験を行なった。すると、ピレン、アントラセン、9,10-ジフェニルアントラセンなどと混合したときに濃度依存的な消光が起きることが確認された。この消光過程は、励起Ru種が還元剤(N,N-ジイソプロピルエチルアミン, DIPEA)から1電子還元されるより、少なくとも1オーダー以上速い。
一方で、高すぎるtriplet energyを持つナフタレンやトリフェニレンでは、効果的な消光が起こらなかった。

②アリールラジカル生成法への応用

臭化アリールの1電子還元によってアリールラジカルが生成し、これが電子豊富芳香環でトラップされる反応をベンチマークとしている。上記検討から見いだされたPAHsのうち、優れた還元ポテンシャルをもつピレンを選択し、下記条件を用いて反応を行なっている。緑色光(525 nm)でも反応は進行するが、長時間を要する。


臭化アリールのなかでも還元ポテンシャルが高いものは反応しない(例えばインドール5位のBrは残る)。基質によっては塩化アリールやアリールトリフラートでも実施可能。亜リン酸エステルと反応させることで、photo-Arbuzov反応への展開も可能。

競合する副反応として、アリールラジカルによるDIEA・+やDMSOからの水素引き抜きが確認されている(ベンゼンがGCやGCMSで検出される)。

議論すべき点

  • 詳細な機構に関してはcontroversialのようである。著者らは本論文で、3重項Ruが3重項PAHを生成し、これがDIPEAから1電子還元を受け、PAHラジカルアニオンが生成するという上記機構を提唱している。一方のBalzaniらは、3重項ピレンへの電子供与がuphillのため、3重項ピレン―3重項ピレンから1重項ピレンが生成する機構を提唱している[1]。これに対して著者らはさらに反論を加えており[2]、Balzaniらの考えも1つであると認めつつも、現時点では詳細の解明は困難となっている。

  • 今回のような可視光増感系の知見が溜まってくれば、これまでUV照射のみで検討されていた反応も可視光系へ転換していく視点が築かれる。インパクトは大きい。

参考文献

  1. Marchini, M.; Bergamini, G.; Cozzi, P. G.; Ceroni, P.; Balzani, V. Angew.Chem. Int. Ed. 2017, 56,12820–12821. doi:10.1002/anie.201706217
  2. Ghosh, I.; Bardagi, J. I.; König, B. Angew.Chem. Int. Ed. 2017, 56, 12822–12824. doi:10.1002/anie.201707594
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ラジカルonボロンでフロンのクロロをロックオン
  2. 乾燥剤の脱水能は?
  3. 複数のねじれを持つ芳香族ベルトの不斉合成と構造解析に成功
  4. 超分子カプセル内包型発光性金属錯体の創製
  5. アイディア創出のインセンティブ~KAKENデータベースの利用法
  6. EDTA:分子か,双性イオンか
  7. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  8. 【Spiber】新卒・中途採用情報

注目情報

ピックアップ記事

  1. 独バイエル、2004年は3部門全てで増収となった可能性=CEO
  2. 森謙治 Kenji Mori
  3. 化学に触れる学びのトレイン“愛称”募集
  4. 第98回―「極限環境における高分子化学」Graeme George教授
  5. π-アリルパラジウム錯体
  6. カラムはオープン?フラッシュ?それとも??
  7. ジボリルメタンに一挙に二つの求電子剤をくっつける
  8. ナノ合金の結晶構造制御法の開発に成功 -革新的材料の創製へ-
  9. フリーデル・クラフツ アシル化 Friedel-Crafts Acylation
  10. 国公立大入試、2次試験の前期日程が実施 ~東京大学の化学の試験をレビュー~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP