[スポンサーリンク]

化学者のつぶやき

可視光増感型電子移動機構に基づく強還元触媒系の構築

[スポンサーリンク]

2017年、レーゲンスブルク大学・Burkhard Königらは、光触媒から可視光増感型電子移動機構 (Sensitization-Initiated Electron Transfer, SenI-ET) によって生じる多環性芳香族炭化水素 (PAH)ラジカルアニオンを活用し、従来の光触媒では難しかった高い還元ポテンシャルを示す触媒系の構築に成功した。

“Sensitization-Initiated Electron Transfer for Photoredox Catalysis”
Ghosh, I.; Shaikh, R. S.; König, B.* Angew. Chem. Int. Ed. 2017, 56, 8544–8549. doi:10.1002/anie.201703004

問題設定

光合成系は光エネルギーを化学的な自由エネルギーへと変換して活用している。この時に光エネルギーは、アンテナ色素(クロロフィルb、βカロテン等)によって取り込まれ、反応中心色素(クロロフィルa 等)へと送られ、光合成反応を進行させることが知られている。この2分子による仕組みが、光エネルギーから酸化還元力への効率的変換を可能としている。
有機合成分野でも可視光レドックス触媒は急速な進展を見せているが、光触媒分子自身に光子の吸収・変換を頼っている。この場合、典型的な光触媒で実現できる還元ポテンシャルには上限があり、必然として応用範囲にも制限があった。

技術や手法のキモ

今回Königらは、自然界の光合成システムから着想を得て、光吸収分子によって光エネルギーを取り込み、それを別の高還元力分子へと移送させる触媒系の確立を目指した研究に取り組んだ。

上記の典型photoredox系にて、 Ru(bpy)32+単独で実現可能な還元ポテンシャルは-1.33V以上にならない。一方、芳香族多環性炭化水素(PAHs)は可視光を吸収しないが、高い還元ポテンシャルを持つことが知られている(例:ピレンの還元ポテンシャル=-2.1V vs SCE)。Ru(bpy)32+を可視光増感剤、三重項エネルギーアクセプターとしてPAHsを用いる系が組めれば、その縛りを超えられると考えた。

主張の有効性検証

①適したPAHsの同定

Ru(bpy)32+からエネルギー移動が速やかに起こるPAHsを同定すべく、消光実験を行なった。すると、ピレン、アントラセン、9,10-ジフェニルアントラセンなどと混合したときに濃度依存的な消光が起きることが確認された。この消光過程は、励起Ru種が還元剤(N,N-ジイソプロピルエチルアミン, DIPEA)から1電子還元されるより、少なくとも1オーダー以上速い。
一方で、高すぎるtriplet energyを持つナフタレンやトリフェニレンでは、効果的な消光が起こらなかった。

②アリールラジカル生成法への応用

臭化アリールの1電子還元によってアリールラジカルが生成し、これが電子豊富芳香環でトラップされる反応をベンチマークとしている。上記検討から見いだされたPAHsのうち、優れた還元ポテンシャルをもつピレンを選択し、下記条件を用いて反応を行なっている。緑色光(525 nm)でも反応は進行するが、長時間を要する。


臭化アリールのなかでも還元ポテンシャルが高いものは反応しない(例えばインドール5位のBrは残る)。基質によっては塩化アリールやアリールトリフラートでも実施可能。亜リン酸エステルと反応させることで、photo-Arbuzov反応への展開も可能。

競合する副反応として、アリールラジカルによるDIEA・+やDMSOからの水素引き抜きが確認されている(ベンゼンがGCやGCMSで検出される)。

議論すべき点

  • 詳細な機構に関してはcontroversialのようである。著者らは本論文で、3重項Ruが3重項PAHを生成し、これがDIPEAから1電子還元を受け、PAHラジカルアニオンが生成するという上記機構を提唱している。一方のBalzaniらは、3重項ピレンへの電子供与がuphillのため、3重項ピレン―3重項ピレンから1重項ピレンが生成する機構を提唱している[1]。これに対して著者らはさらに反論を加えており[2]、Balzaniらの考えも1つであると認めつつも、現時点では詳細の解明は困難となっている。

  • 今回のような可視光増感系の知見が溜まってくれば、これまでUV照射のみで検討されていた反応も可視光系へ転換していく視点が築かれる。インパクトは大きい。

参考文献

  1. Marchini, M.; Bergamini, G.; Cozzi, P. G.; Ceroni, P.; Balzani, V. Angew.Chem. Int. Ed. 2017, 56,12820–12821. doi:10.1002/anie.201706217
  2. Ghosh, I.; Bardagi, J. I.; König, B. Angew.Chem. Int. Ed. 2017, 56, 12822–12824. doi:10.1002/anie.201707594
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【速報】HGS 分子構造模型「 立体化学 学生用セット」販売再開…
  2. 化学系学生のための就活2019
  3. 研究助成金及び海外留学補助金募集:公益財団法人アステラス病態代謝…
  4. マスクをいくつか試してみた
  5. Scifinderが実験項情報閲覧可能に!
  6. SNSコンテスト企画『集まれ、みんなのラボのDIY!』~結果発表…
  7. スイスの博士課程ってどうなの?3〜面接と入学手続き〜
  8. TED.comで世界最高の英語プレゼンを学ぶ

注目情報

ピックアップ記事

  1. 小スケール反応での注意点 失敗しないための処方箋
  2. 粒子画像モニタリングシステム EasyViewerをデモしてみた
  3. 就活・転職・面接・仕事まとめ
  4. 身近な食品添加物の組み合わせが砂漠の水不足を解決するかもしれない
  5. L-RAD:未活用の研究アイデアの有効利用に
  6. スチレンにCoのHATをかぶせれば、インドールを不斉アルキル化
  7. 第17回ケムステVシンポ『未来を拓く多彩な色素材料』を開催します!
  8. アリルオキシカルボニル保護基 Alloc Protecting Group
  9. 緑茶成分テアニンに抗ストレス作用、太陽化学、名大が確認
  10. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらしい

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年4月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

丸岡 啓二 Keiji Maruoka

丸岡啓二 (まるおか けいじ)は日本の有機化学者である。京都大学大学院薬学研究科 特任教授。専門は有…

電子一つで結合!炭素の新たな結合を実現

第627回のスポットライトリサーチは、北海道大有機化学第一研究室(鈴木孝紀教授、石垣侑祐准教授)で行…

柔軟な姿勢が成功を引き寄せた50代技術者の初転職。現職と同等の待遇を維持した確かなサポート

50代での転職に不安を感じる方も多いかもしれません。しかし、長年にわたり築き上げてきた専門性は大きな…

SNS予想で盛り上がれ!2024年ノーベル化学賞は誰の手に?

さてことしもいよいよ、ノーベル賞シーズンが到来します!化学賞は日本時間 2024…

「理研シンポジウム 第三回冷却分子・精密分光シンポジウム」を聴講してみた

bergです。この度は2024年8月30日(金)~31日(土)に電気通信大学とオンラインにて開催され…

【書籍】Pythonで動かして始める量子化学計算

概要PythonとPsi4を用いて量子化学計算の基本を学べる,初学者向けの入門書。(引用:コ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP