[スポンサーリンク]

化学者のつぶやき

完熟バナナはブラックライトで青く光る

[スポンサーリンク]

 

筆者自身この事実に驚いたので、今回はその話をとりあげます(画像:ChemistryWorldより改変)。

何はともあれ、上記写真をご覧ください。バナナにブラックライト=紫外線(UV)を当てて撮影した写真です。

いずれも青く光っている(青色蛍光を発している)のですが、黄色のバナナほど明るく、緑色のバナナほど暗く光っていることがおわかりでしょう。この現象はバナナの熟成度と相関があるようなのです。

オーストリア・Innsubruck大学のKrautlerらは、こういった現象がどのように起こっているのかを解明することに成功しました[1]。


結論から言えば、バナナに含まれているクロロフィル色素が分解して生じる化合物(FCC)が原因なのだそうです。

FCCは蛍光性クロロフィル異化生成物(Fluorecesnt Chlorophyll Catebolite)の略称です。緑色色素であるクロロフィルは時間が経つにつれ分解し、FCCに変化していきます。バナナの場合はMc-FCC-53という化合物となり、これがUV照射によって青い蛍光を発します。

banana_UV_2.gif

しかし過渡的な分解物でしかないFCCは存在時間が短く、肉眼で見える蛍光を発するほどに濃度が高く存在しないものだそうです。そのためクロロフィルがあって分解していけば青く光るのか、というと必ずしもそうではないようです。
バナナの場合はこの辺り特別で、生体内でFCCが化学修飾を受けて化学的安定度が増し、濃度が高まっているのだそうです。このため、熟成したバナナは青く光ることができるのです。

ちなみに熟成バナナの黄色は、カロテノイドという化合物に起因しています。時間が経てばクロロフィルが分解して緑色が弱まり、カロテノイドの黄色が相対的に強く見えてくる、という理屈です。つまりはこちらもクロロフィルが絡んでいるのですね。

さて、バナナは古くなると茶色の斑点が沢山出来てきます。皆さんもそうでしょうが、一面茶色のバナナはどうにも食べる気が失せてしまうものです。古くなったバナナはどう光るのか?―― これについても、つい最近、同グループからの研究報告がなされました[2]。

古くなったバナナに紫外線をあてると、斑点周りがとりわけ明るい蛍光を発し、輪っかのように見えます。その一方で斑点部そのものの蛍光は弱いことが分かります。 論文によれば、輪っか部分にはとりわけ高い濃度でFCCが含まれる反面、中央斑点部分のFCC濃度はあまり高くないそうです。つまりは、生細胞(熟成)から細胞死(腐敗)へ向かう過渡期にこそ、FCC濃度が高くなるということでもあります。彼らはこの結果に基づき、「細胞死のマーカー化合物としてFCCが活用可能になるのではないか」と提案しています。

banana_uv_3.jpg
(画像は論文[2]より転載)

さて、以上の事実は、『フルーツを主食とする動物の中には、人間の目では見えない色を見て、鮮度を見極めているものがいるのでは?』という仮説をも新たに呈示します。

人間には検知できない波長の光を見ることのできる動物は沢山いますし、何よりこの研究結果を人間視点から眺めたとしても、『”びみょーなバナナ”でも、ブラックライトを当てるだけで食べ頃かどうかが簡単に分かる』ということでもあります。
他の動物が同じような判別の仕方をしてたとしても、なんらおかしくないですよね。

 

関連動画

関連文献

  1. Moser, S.; Muller, T.; Ebert, M.-O.; Jockusch, S.; Turro, N .J.; Krautler, B. Angew. Chem. Int. Ed. 2008, 47, 8954. doi:10.1002/anie.200803189
  2. Moser, S.; Muller, T.; Holzinger, A.; Lutc, C.; Jockusch, S.; Turro, N .J.; Krautler, B. Proc. Natl. Acad. Sci., USA 2009, 106, 15538. doi: 10.1073/pnas.0908060106

 

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Nature Reviews Chemistry創刊!
  2. “関節技”でグリコシル化を極める!
  3. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻…
  4. データケミカル株式会社ってどんな会社?
  5. 第25回 名古屋メダルセミナー The 25th Nagoya …
  6. MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性…
  7. Carl Boschの人生 その11
  8. 光触媒でエステルを多電子還元する

注目情報

ピックアップ記事

  1. ノーベル化学賞・下村さん帰国
  2. アメリカで医者にかかる
  3. あなたの天秤、正確ですか?
  4. 沖縄科学技術大学院大学(OIST) 教員公募
  5. カシノナガキクイムシ集合フェロモンの化学構造を解明
  6. 酸と塩基のつとめを個別に完遂した反応触媒
  7. 学振申請書を磨き上げるポイント ~自己評価欄 編(後編)~
  8. 化学反応を“プローブ”として用いて分子内電子移動プロセスを検出
  9. 2009年1月人気化学書籍ランキング
  10. 化学Webギャラリー@Flickr 【Part4】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP