[スポンサーリンク]

化学者のつぶやき

生命の起源に迫る水中ペプチド合成法

[スポンサーリンク]

原始地球の環境に類似した条件下でペプチド合成可能なアミノニトリルライゲーションが発見された。極めて化学選択性が高く、タンパク質を構成する20種のアミノ酸全てに対して適用できる。

生命の起源

生命活動の中心を担うアミノ酸、ペプチドは生命が誕生する前に存在していたはずである。
生命が誕生したとされる舞台は海中であり、そこでどのように前生物的(prebiotic)にアミノ酸やペプチドが合成されたのか、その起源に迫る研究はロマンに溢れる。ユーリー・ミラーのアミノ酸合成が生命の起源に迫る実験として有名であるが、それらアミノ酸からどのようにペプチドを形成するかについての論争は耐えない。その一つの答えとして注目されていたのがα-アミノニトリル(AA-CN)である。
AA-CNは重合など、ニトリル部位の変換を経てペプチドとなりうると期待されてきた。しかし、この変換には強酸性や高熱などの厳しい条件を要し、自然界の中性条件下でアミノニトリルからペプチドを形成する手法は明らかではなかった(図1A)[1]
一方で、Orgelらは以前、α-アミノチオカルボン酸(AA-SH)が生合成におけるチオエステルの前駆体であると提唱した[2]。AA-SHは求電子的もしくは酸化的活性化によりライゲーション可能であると期待できるが[3a]、海中のような中性pH条件下ではライゲーションに対して不活性であった。
より重要な課題として、AA-SHの前生物的な合成の解明は完全ではない。N-カルボキシル無水物(NCAs)からAA-SHを合成する手法が報告されたが、水中では加水分解が進行してしまう(図1B)[3b,c]
今回、ロンドン大学のPowner教授らは、Orgelらも以前提唱していたAA-CNとH2Sとのチオリシスによるチオアミドを経由するAA-SH合成法に着目した。AA-CNをアシル化したAc-AA-CNを用いて、原始環境下でも存在していたフェリシアニド(K3[Fe(CN)6])などのチオカルボン酸活性化剤存在下H2Sを反応させることで、水中でα-ペプチドを生成するAA-CNライゲーションが進行することを発見したので紹介する(図1C)。

図1. (A) アミノニトリルのポリマー化 (B) NCAからAA-SHの合成 (C) 今回のAA-CNライゲーション

 

“Peptide ligation by chemoselective aminonitrile coupling in water”
Canavelli, P.; Islam, S.; Powner, M. W. Nature 2019,571, 546.
DOI: 10.1038/s41586-019-1371-4

論文著者の紹介


研究者:Matthew W. Powner
研究者の経歴:
-2005 BSc, MChem University of Manchester (Prof. David J. Proctor)
2005-2009 Ph.D, University of Manchester (Prof. John Sutherland)
2009-2011 Posdoc, Harvard Medical School (Prof. Jack W. Szostak)
2012-2015 Senior Lecturer at University College London
2015- Reader at University College London
研究内容:生命の起源に関する研究、光化学、多成分反応

論文の概要

本AA-CNライゲーションにおいて重要となるのが、まずアシルα-アミノニトリル(Ac-AA-CN)を用いることである。このAc-AA-CNはフェリシアニド存在下AA-CN (1)とチオ酢酸から簡便に合成できた(図2A)。
このアシル化体を用いることで①H2Sを用いたニトリルのチオリシスによるチオアミドの生成、②チオアミドの加水分解と、続くチオカルボン酸の活性化剤存在下でAA-CNのライゲーションが円滑に進行する。
①に関しては、詳細な議論はされていないものの、H2Sを用いて水中(pH 9)でAc-Gly-CNとGly-CNやMeCNなどの競争実験を行った結果、高化学選択的にAc-Gly-SNH2が得られたことから、アシル基の有用性が強調されている(図2B)。
②に関して、チオアミド(AA-SNH2)の加水分解の際、アシル化体ではチオカルボン酸(Ac-AA-SH)が良好な収率で得られる(図2C)。これに対し、アシル基がない場合ではチオカルボン酸は得られず、ジケトピペラジン(DKP)などが副生した。このAc-AA-CNを用いることで、著者らは計9種のAc-AA-SHの合成に成功した。
このようにして生成したAc-AA-SHは、酸化剤(フェリシアニド)を用いて活性化することでAA-CNやアミノ酸などとライゲーションできる(図2D)。
特筆すべき点は高い化学選択性である。例えばアミノ残基をもつAc-Lys-SHとAA-CNのライゲーションにおいて、側鎖上のアミノ基は反応せず、AA-CNのアミノ基での化学選択的なライゲーションができる。このときに重要となるのが、pHとアミノ基共役酸のpKa(pKaH)との相関であるが、詳細は論文を参照してほしい。この高い化学選択性により、AA-CNだけでなく20種の必須アミノ酸(AA)自体もAc-AA-SHとライゲーション可能である。いずれのAAも保護基を必要とせずともライゲーションできる。また、フラグメントライゲーションも可能であり、最大で11残基をもつペプチドの合成にも成功している。
以上、原始環境下に近い条件下(水中、中性)、ペプチド合成が可能なAA-CNライゲーション法が開発された。議論の耐えない生命の起源に関して、一石を投じる報告である。

図2. (A)AA-CNのアシル化 (B)チオリシスの化学選択性(競争実験) (C)チオアミドの加水分解 (D) Ac-AA-SHと各AA-Xのライゲーション

参考文献

  1. Hanafusa, H.; Akabori, S. Bull Chem. Soc. Jpn.1959, 32, 626. DOI: 10.1246/bcsj.32.626
  2. [a] Liu, R.; Orgel, L. E. Nature1997, 389, 52. DOI: 1038/37944[b] Maurel, M. C.; Orgel, L. E. Orig. Life Evol. Biosph. 2000, 30, 423. DOI: 10.1023/A:1006728514362
  3. [a]Okamoto, R.; Haraguchi, T.; Nomura, K.; Maki, Y. Izumi, M.; Kajihara, Y. Biochemistry 2019,58, 1672. DOI: 1021/acs.biochem.8b01239[b] Leman, L.; Orgel, L.; Ghadiri, M. R. Science2004, 306, 283. DOI:10.1126/science.1102722[c] Leman, L. J.; Ghadiri, M. R. Synlett 2017,28, 68. DOI: 10.1055/s-0036-1589410
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 分子集合体がつくるポリ[n]カテナン
  2. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン P…
  3. 環サイズを選択できるジアミノ化
  4. 植物毒の現地合成による新規がん治療法の開発
  5. 【4月開催】第七回 マツモトファインケミカル技術セミナー
  6. 引っ張ると白色蛍光を示すゴム材料
  7. 高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた
  8. 味の素グループの化学メーカー「味の素ファインテクノ社」を紹介しま…

注目情報

ピックアップ記事

  1. ポール・ウェンダー Paul A. Wender
  2. 右田・小杉・スティル クロスカップリング Migita-Kosugi-Stille Cross Coupling
  3. すぐできる 量子化学計算ビギナーズマニュアル
  4. Lead Optimization for Medicinal Chemists
  5. ケミカルバイオロジーがもたらす創薬イノベーション ~ グローバルヘルスに貢献する天然物化学の新潮流 ~
  6. 目指せPlanar!反芳香族性NIR色素の開発
  7. ダイキン、特許を無償開放 代替フロンのエアコン冷媒
  8. ケー・シー・ニコラウ K. C. Nicolaou
  9. 石見銀山遺跡
  10. 99.7%の精度で偽造ウイスキーを見抜ける「人工舌」が開発される

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP