[スポンサーリンク]

化学者のつぶやき

生命の起源に迫る水中ペプチド合成法

[スポンサーリンク]

原始地球の環境に類似した条件下でペプチド合成可能なアミノニトリルライゲーションが発見された。極めて化学選択性が高く、タンパク質を構成する20種のアミノ酸全てに対して適用できる。

生命の起源

生命活動の中心を担うアミノ酸、ペプチドは生命が誕生する前に存在していたはずである。
生命が誕生したとされる舞台は海中であり、そこでどのように前生物的(prebiotic)にアミノ酸やペプチドが合成されたのか、その起源に迫る研究はロマンに溢れる。ユーリー・ミラーのアミノ酸合成が生命の起源に迫る実験として有名であるが、それらアミノ酸からどのようにペプチドを形成するかについての論争は耐えない。その一つの答えとして注目されていたのがα-アミノニトリル(AA-CN)である。
AA-CNは重合など、ニトリル部位の変換を経てペプチドとなりうると期待されてきた。しかし、この変換には強酸性や高熱などの厳しい条件を要し、自然界の中性条件下でアミノニトリルからペプチドを形成する手法は明らかではなかった(図1A)[1]
一方で、Orgelらは以前、α-アミノチオカルボン酸(AA-SH)が生合成におけるチオエステルの前駆体であると提唱した[2]。AA-SHは求電子的もしくは酸化的活性化によりライゲーション可能であると期待できるが[3a]、海中のような中性pH条件下ではライゲーションに対して不活性であった。
より重要な課題として、AA-SHの前生物的な合成の解明は完全ではない。N-カルボキシル無水物(NCAs)からAA-SHを合成する手法が報告されたが、水中では加水分解が進行してしまう(図1B)[3b,c]
今回、ロンドン大学のPowner教授らは、Orgelらも以前提唱していたAA-CNとH2Sとのチオリシスによるチオアミドを経由するAA-SH合成法に着目した。AA-CNをアシル化したAc-AA-CNを用いて、原始環境下でも存在していたフェリシアニド(K3[Fe(CN)6])などのチオカルボン酸活性化剤存在下H2Sを反応させることで、水中でα-ペプチドを生成するAA-CNライゲーションが進行することを発見したので紹介する(図1C)。

図1. (A) アミノニトリルのポリマー化 (B) NCAからAA-SHの合成 (C) 今回のAA-CNライゲーション

 

“Peptide ligation by chemoselective aminonitrile coupling in water”
Canavelli, P.; Islam, S.; Powner, M. W. Nature 2019,571, 546.
DOI: 10.1038/s41586-019-1371-4

論文著者の紹介


研究者:Matthew W. Powner
研究者の経歴:
-2005 BSc, MChem University of Manchester (Prof. David J. Proctor)
2005-2009 Ph.D, University of Manchester (Prof. John Sutherland)
2009-2011 Posdoc, Harvard Medical School (Prof. Jack W. Szostak)
2012-2015 Senior Lecturer at University College London
2015- Reader at University College London
研究内容:生命の起源に関する研究、光化学、多成分反応

論文の概要

本AA-CNライゲーションにおいて重要となるのが、まずアシルα-アミノニトリル(Ac-AA-CN)を用いることである。このAc-AA-CNはフェリシアニド存在下AA-CN (1)とチオ酢酸から簡便に合成できた(図2A)。
このアシル化体を用いることで①H2Sを用いたニトリルのチオリシスによるチオアミドの生成、②チオアミドの加水分解と、続くチオカルボン酸の活性化剤存在下でAA-CNのライゲーションが円滑に進行する。
①に関しては、詳細な議論はされていないものの、H2Sを用いて水中(pH 9)でAc-Gly-CNとGly-CNやMeCNなどの競争実験を行った結果、高化学選択的にAc-Gly-SNH2が得られたことから、アシル基の有用性が強調されている(図2B)。
②に関して、チオアミド(AA-SNH2)の加水分解の際、アシル化体ではチオカルボン酸(Ac-AA-SH)が良好な収率で得られる(図2C)。これに対し、アシル基がない場合ではチオカルボン酸は得られず、ジケトピペラジン(DKP)などが副生した。このAc-AA-CNを用いることで、著者らは計9種のAc-AA-SHの合成に成功した。
このようにして生成したAc-AA-SHは、酸化剤(フェリシアニド)を用いて活性化することでAA-CNやアミノ酸などとライゲーションできる(図2D)。
特筆すべき点は高い化学選択性である。例えばアミノ残基をもつAc-Lys-SHとAA-CNのライゲーションにおいて、側鎖上のアミノ基は反応せず、AA-CNのアミノ基での化学選択的なライゲーションができる。このときに重要となるのが、pHとアミノ基共役酸のpKa(pKaH)との相関であるが、詳細は論文を参照してほしい。この高い化学選択性により、AA-CNだけでなく20種の必須アミノ酸(AA)自体もAc-AA-SHとライゲーション可能である。いずれのAAも保護基を必要とせずともライゲーションできる。また、フラグメントライゲーションも可能であり、最大で11残基をもつペプチドの合成にも成功している。
以上、原始環境下に近い条件下(水中、中性)、ペプチド合成が可能なAA-CNライゲーション法が開発された。議論の耐えない生命の起源に関して、一石を投じる報告である。

図2. (A)AA-CNのアシル化 (B)チオリシスの化学選択性(競争実験) (C)チオアミドの加水分解 (D) Ac-AA-SHと各AA-Xのライゲーション

参考文献

  1. Hanafusa, H.; Akabori, S. Bull Chem. Soc. Jpn.1959, 32, 626. DOI: 10.1246/bcsj.32.626
  2. [a] Liu, R.; Orgel, L. E. Nature1997, 389, 52. DOI: 1038/37944[b] Maurel, M. C.; Orgel, L. E. Orig. Life Evol. Biosph. 2000, 30, 423. DOI: 10.1023/A:1006728514362
  3. [a]Okamoto, R.; Haraguchi, T.; Nomura, K.; Maki, Y. Izumi, M.; Kajihara, Y. Biochemistry 2019,58, 1672. DOI: 1021/acs.biochem.8b01239[b] Leman, L.; Orgel, L.; Ghadiri, M. R. Science2004, 306, 283. DOI:10.1126/science.1102722[c] Leman, L. J.; Ghadiri, M. R. Synlett 2017,28, 68. DOI: 10.1055/s-0036-1589410
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アメリカで Ph.D. を取る –エッセイを書くの巻– (後編)…
  2. 魔法のカイロ アラジン
  3. ゴードン会議に参加して:ボストン周辺滞在記 PartI
  4. ケムステVシンポまとめ
  5. 有機光触媒を用いたポリマー合成
  6. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~…
  7. 触媒表面の化学反応をナノレベルでマッピング
  8. 湿度変化で発電する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. SchultzとKay: 米スクリプス研究所のトップへ
  2. 混合原子価による芳香族性
  3. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級アルキル基導入・コンプラナジン・アライン化学・糖鎖クラスター・サリチルアルデヒド型イネいもち病菌毒素
  4. ハニートラップに対抗する薬が発見される?
  5. ジムロート転位 (ANRORC 型) Dimroth Rearrangement via An ANRORC Mechanism
  6. マタタビの有効成分のはなし【更新】
  7. 半年服用で中性脂肪3割減 ビタミンPと糖の結合物質
  8. 第34回 生物学と合成化学のハイブリッド高分子材料を開発する―Jeroen Cornelissen教授
  9. ヘンリー反応 (ニトロアルドール反応) Henry Reaction (Nitroaldol Reaction)
  10. 硤合 憲三 Kenso Soai

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
« 8月   10月 »
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

フラーレン〜ケージを拡張、時々、内包〜

トリアジン誘導体とN-フェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP