[スポンサーリンク]

化学者のつぶやき

鉄触媒を用いたテトラゾロピリジンのC(sp3)–Hアミノ化反応

[スポンサーリンク]

鉄触媒を用いたテトラゾロピリジンの分子内C(sp3)Hアミノ化が開発された。本反応はアザインドリンやピリドピリミジノン誘導体の新規合成法として期待される。

アザインドリン合成法

生物活性分子に窒素原子が存在すると、その分子の化学的性質は大きく変化する[1]。多くの生物活性分子の骨格であるインドリンと7-アザインドリンもその一つである。しかし、インドリンの合成法は数多く報告されているが、7-アザインドリンの合成法はほとんど報告されていない。数少ない例の1つにロジウム触媒によるアジド–メチレンシクロプロパンとイソニトリルの分子内環化反応がある(図 1A)[2]。本反応は、アジドから脱窒素を伴い生成した金属ナイトレノイドとイソニトリルが反応した後、メチレンシクロプロパンと[3+2]付加環化反応が進行する。

一方、テトラゾロピリジンは高温条件下脱窒素し、ナイトレンを生成することが古くから知られている(図 1B)[3]。この知見を利用し、2018年、Chattopadhyayらはイリジウム触媒によるテトラゾロピリジンの金属ナイトレノイドを経由したC(sp2)–Hアミノ化によりα-カルボリンの合成に成功した(図 1C)[4]。しかし本手法は、C(sp2)–H結合に比べて高い結合解離エネルギーを示すC(sp3)–H結合に対しては適用されていなかった。今回、Chattopadhyayらは鉄触媒を用いることでテトラゾロピリジンのC(sp3)–H結合を選択的にアミノ化し、アザインドリンの合成に成功した(図 1D)。また本手法は、アミド基をもつテトラゾロピリジンを用いることでピリドピリミジノンの形成も可能にする。

図1. (A)アザインドリン合成法 (B) テトラゾロピリジンからのナイトレン生成 (C)イリジウム触媒を用いたテトラゾロピリジンのC(sp2)–Hアミノ化 (D) 今回の反応

 

“Iron-Catalyzed Amination of Strong Aliphatic C(sp3)H Bonds”

Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc.2020, 142, 16211–16217.

DOI: 10.1021/jacs.0c07810

論文著者の紹介


研究者: Buddhadeb Chattopadhyay

研究者の経歴:

2001          BSc, Department of Chemistry, The University of Burdwan, India

2003          MSc, Department of Chemistry, Visva-Bharati Central University, India

2009          Ph.D, Department of Chemistry, University of Kalyani, India. (Professor K. C. Majumdar)

2009–2011                  Postdoc, Department of Chemistry, University of Illinois at Chicago, USA, (Professor Vladimir Gevorgyan)

2011–2014                  Postdoc, Department of Chemistry, Michigan State University, USA. (Professor Milton R. Smith III)

2014–2016                  Researcher, Ramanujan Faculty, Centre of Biomedical research (CBMR), India

2016–                             Assistant Professor, Centre of Biomedical research (CBMR), India

研究内容:遷移金属触媒を用いたC–H活性化、有機合成のための新規配位子の合成、金属ナイトレノイド、生医学分子の設計

論文の概要

本手法は鉄ポルフィリン触媒Fe(TPP)Cl存在下、Znを還元剤として添加し、テトラゾロピリジン1をベンゼン溶媒中120 °Cで反応させることで、アザインドリン2を生成する(図 2A)。基質適用範囲は広く、フェニル基やtBu基、金属を被毒するCl原子をもつ場合も高収率で2が得られる(1a1c)。また1dのような複数のC–H結合が存在する場合でも、位置選択的にアミノ化は進行する。一方で、アミド基をもつテトラゾロピリジン3を用いることで六員環化合物4の構築も可能にした。ジイソプロピルアミドやモルホリルアミドでも問題なく反応は進行する(3a,3b)。また窒素上に異なる置換基上のC–H結合がある場合、ベンジル位が位置選択的にアミノ化される(3c)。

さらにキラルな鉄ポルフィリン触媒を用いることでエナンチオ選択的なC(sp3)–H結合アミノ化反応に挑戦した(図2B)。その結果、不斉触媒の置換基を適切に変えることでエナンチオ優先的にアザインドリン2a’を得ることに成功した。

推定反応機構は以下の通りである(図2C)。まずFe触媒A’がZnにより1電子還元され、触媒活性種Aを生じる。次に1との平衡により生成するアジド化合物1’Aに配位してBを形成、続く脱窒素によってナイトレンラジカル中間体[5]Cを形成する。その後CのC–H結合が分子内で切断され中間体Dを与える。最後に分子内ラジカル環化反応によりアザインドリン2が得られる。

図2. (A) 基質適用範囲 (B) エナンチオ優先的C–Hアミノ化 (C) 推定反応機構

 

以上、鉄触媒を用いたテトラゾロピリジンの分子内C–Hアミノ化反応が開発された。本手法は容易に合成できるテトラゾロピリジンから合成困難なアザインドリン骨格やピリドピリミジノン骨格を構築できるため、全合成の分野への応用が期待される。

参考文献

  1. Richter, M.; Drown, B.; Riley, A. Nature 2017, 545, 299–304. DOI: 1038/nature22308
  2. Chen K.; Tang X.-Y.; Shi M. Chem. Commun. 2016, 52, 1967–1970. DOI: 10.1039/C5CC09236A
  3. (a) Harder, R.; Wentrup, C. Pyridylnitrenes. J. Am. Chem. Soc. 1976, 98, 1259–1260. DOI: 10.1021/ja00421a035 (b) Wentrup, C.; Winter, H. W. J. Am. Chem. Soc. 1980, 102, 6159–6161. DOI: 10.1021/ja00539a039 (c) Evans, R. A.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 4009–4017. DOI: 10.1021/ja9541645 (d) Kvaskoff, D.; Vosswinkel, M.; Wentrup, J. Am. Chem. Soc. 2011, 133, 5413–5424. DOI: 10.1021/ja111155r
  4. Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429–8433. DOI: 10.1021/jacs.8b05343
  5. (a)Hennessy, E. T.; Betley, T. A. Science 2013, Z340, 591-595. DOI: 1126/science.1233701 (b) Kuijpers, P. F.; van der Vlugt, J. I.; Schneider, S.; de Bruin, B.; Chem. Eur. J. 2017, 23, 13819. DOI: 10.1002/chem.201702537

関連書籍

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. C–NおよびC–O求電子剤間の還元的クロスカップリング
  2. 【Q&Aシリーズ❸ 技術者・事業担当者向け】 マイクロ…
  3. 「関東化学」ってどんな会社?
  4. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  5. Grignard反応剤が一人二役!? 〜有機硫黄化合物を用いる<…
  6. 第30回ケムステVシンポ「世界に羽ばたく日本の化学研究」ーAld…
  7. iPhone/iPodTouchで使える化学アプリケーション 【…
  8. ルーブ・ゴールドバーグ反応 その2

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第24回 化学の楽しさを伝える教育者 – Darren Hamilton教授
  2. 危険物に関する法令:指定数量の覚え方
  3. 有機EL、寿命3万時間 京セラ開発、18年春に量産開始
  4. エクソソーム学術セミナー 主催:同仁化学研究所
  5. 次世代医薬とバイオ医療
  6. ダイセルによる化学を活用した新規デバイス開発
  7. チャン・ラム・エヴァンス カップリング Chan-Lam-Evans Coupling
  8. 未来の製薬を支える技術 – Biotage®金属スカベンジャーツールキット
  9. アルバート・エッシェンモーザー Albert Eschenmoser
  10. 触媒的syn-ジクロロ化反応への挑戦

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP