[スポンサーリンク]

化学者のつぶやき

鉄触媒を用いたテトラゾロピリジンのC(sp3)–Hアミノ化反応

[スポンサーリンク]

鉄触媒を用いたテトラゾロピリジンの分子内C(sp3)Hアミノ化が開発された。本反応はアザインドリンやピリドピリミジノン誘導体の新規合成法として期待される。

アザインドリン合成法

生物活性分子に窒素原子が存在すると、その分子の化学的性質は大きく変化する[1]。多くの生物活性分子の骨格であるインドリンと7-アザインドリンもその一つである。しかし、インドリンの合成法は数多く報告されているが、7-アザインドリンの合成法はほとんど報告されていない。数少ない例の1つにロジウム触媒によるアジド–メチレンシクロプロパンとイソニトリルの分子内環化反応がある(図 1A)[2]。本反応は、アジドから脱窒素を伴い生成した金属ナイトレノイドとイソニトリルが反応した後、メチレンシクロプロパンと[3+2]付加環化反応が進行する。

一方、テトラゾロピリジンは高温条件下脱窒素し、ナイトレンを生成することが古くから知られている(図 1B)[3]。この知見を利用し、2018年、Chattopadhyayらはイリジウム触媒によるテトラゾロピリジンの金属ナイトレノイドを経由したC(sp2)–Hアミノ化によりα-カルボリンの合成に成功した(図 1C)[4]。しかし本手法は、C(sp2)–H結合に比べて高い結合解離エネルギーを示すC(sp3)–H結合に対しては適用されていなかった。今回、Chattopadhyayらは鉄触媒を用いることでテトラゾロピリジンのC(sp3)–H結合を選択的にアミノ化し、アザインドリンの合成に成功した(図 1D)。また本手法は、アミド基をもつテトラゾロピリジンを用いることでピリドピリミジノンの形成も可能にする。

図1. (A)アザインドリン合成法 (B) テトラゾロピリジンからのナイトレン生成 (C)イリジウム触媒を用いたテトラゾロピリジンのC(sp2)–Hアミノ化 (D) 今回の反応

 

“Iron-Catalyzed Amination of Strong Aliphatic C(sp3)H Bonds”

Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc.2020, 142, 16211–16217.

DOI: 10.1021/jacs.0c07810

論文著者の紹介


研究者: Buddhadeb Chattopadhyay

研究者の経歴:

2001          BSc, Department of Chemistry, The University of Burdwan, India

2003          MSc, Department of Chemistry, Visva-Bharati Central University, India

2009          Ph.D, Department of Chemistry, University of Kalyani, India. (Professor K. C. Majumdar)

2009–2011                  Postdoc, Department of Chemistry, University of Illinois at Chicago, USA, (Professor Vladimir Gevorgyan)

2011–2014                  Postdoc, Department of Chemistry, Michigan State University, USA. (Professor Milton R. Smith III)

2014–2016                  Researcher, Ramanujan Faculty, Centre of Biomedical research (CBMR), India

2016–                             Assistant Professor, Centre of Biomedical research (CBMR), India

研究内容:遷移金属触媒を用いたC–H活性化、有機合成のための新規配位子の合成、金属ナイトレノイド、生医学分子の設計

論文の概要

本手法は鉄ポルフィリン触媒Fe(TPP)Cl存在下、Znを還元剤として添加し、テトラゾロピリジン1をベンゼン溶媒中120 °Cで反応させることで、アザインドリン2を生成する(図 2A)。基質適用範囲は広く、フェニル基やtBu基、金属を被毒するCl原子をもつ場合も高収率で2が得られる(1a1c)。また1dのような複数のC–H結合が存在する場合でも、位置選択的にアミノ化は進行する。一方で、アミド基をもつテトラゾロピリジン3を用いることで六員環化合物4の構築も可能にした。ジイソプロピルアミドやモルホリルアミドでも問題なく反応は進行する(3a,3b)。また窒素上に異なる置換基上のC–H結合がある場合、ベンジル位が位置選択的にアミノ化される(3c)。

さらにキラルな鉄ポルフィリン触媒を用いることでエナンチオ選択的なC(sp3)–H結合アミノ化反応に挑戦した(図2B)。その結果、不斉触媒の置換基を適切に変えることでエナンチオ優先的にアザインドリン2a’を得ることに成功した。

推定反応機構は以下の通りである(図2C)。まずFe触媒A’がZnにより1電子還元され、触媒活性種Aを生じる。次に1との平衡により生成するアジド化合物1’Aに配位してBを形成、続く脱窒素によってナイトレンラジカル中間体[5]Cを形成する。その後CのC–H結合が分子内で切断され中間体Dを与える。最後に分子内ラジカル環化反応によりアザインドリン2が得られる。

図2. (A) 基質適用範囲 (B) エナンチオ優先的C–Hアミノ化 (C) 推定反応機構

 

以上、鉄触媒を用いたテトラゾロピリジンの分子内C–Hアミノ化反応が開発された。本手法は容易に合成できるテトラゾロピリジンから合成困難なアザインドリン骨格やピリドピリミジノン骨格を構築できるため、全合成の分野への応用が期待される。

参考文献

  1. Richter, M.; Drown, B.; Riley, A. Nature 2017, 545, 299–304. DOI: 1038/nature22308
  2. Chen K.; Tang X.-Y.; Shi M. Chem. Commun. 2016, 52, 1967–1970. DOI: 10.1039/C5CC09236A
  3. (a) Harder, R.; Wentrup, C. Pyridylnitrenes. J. Am. Chem. Soc. 1976, 98, 1259–1260. DOI: 10.1021/ja00421a035 (b) Wentrup, C.; Winter, H. W. J. Am. Chem. Soc. 1980, 102, 6159–6161. DOI: 10.1021/ja00539a039 (c) Evans, R. A.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 4009–4017. DOI: 10.1021/ja9541645 (d) Kvaskoff, D.; Vosswinkel, M.; Wentrup, J. Am. Chem. Soc. 2011, 133, 5413–5424. DOI: 10.1021/ja111155r
  4. Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429–8433. DOI: 10.1021/jacs.8b05343
  5. (a)Hennessy, E. T.; Betley, T. A. Science 2013, Z340, 591-595. DOI: 1126/science.1233701 (b) Kuijpers, P. F.; van der Vlugt, J. I.; Schneider, S.; de Bruin, B.; Chem. Eur. J. 2017, 23, 13819. DOI: 10.1002/chem.201702537

関連書籍

山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学物質でiPS細胞を作る
  2. 分子構造を 3D で観察しよう (3):新しい見せ方
  3. 個性あるTOCその③
  4. “秒”で分析 をあたりまえに―利便性が高まるSFC
  5. ナイトレン
  6. 最小のシクロデキストリンを組み上げる!
  7. ACD/ChemSketch Freeware 12.0
  8. 原子3個分の直径しかない極細ナノワイヤーの精密多量合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 旭化成、5年で戦略投資4千億
  2. リチウムにビリリとしびれた芳香環
  3. 排ガス原料のSAFでデリバリーフライトを実施
  4. 骨粗しょう症治療薬、乳がん予防効果も・米国立がん研究所
  5. 架橋シラ-N-ヘテロ環合成の新手法
  6. Louis A. Carpino ルイス・カルピノ
  7. 学生実験・いまむかし
  8. 280億円賠償評決 米メルク社治療薬副作用で死亡 テキサス州
  9. アルカロイド alkaloid
  10. 化学Webギャラリー@Flickr 【Part5】

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに向けて~

第282回のスポットライトリサーチは、大阪府立大学 大学院理学系研究科(松坂研究室)・山本大貴さんに…

第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

第133回の海外化学者インタビューはジェイソン・チン教授です。ケンブリッジMRC分子生物学研究所のタ…

アメリカ大学院留学:卒業後の進路とインダストリー就活(3)

前回・前々回の記事では、アメリカのPhD取得後の進路について、一般的な進路やインダストリー就活の流れ…

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された。本手法…

化学者のためのエレクトロニクス講座~次世代の通信技術編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

Chem-Station Twitter

PAGE TOP