[スポンサーリンク]

化学者のつぶやき

鉄触媒を用いたテトラゾロピリジンのC(sp3)–Hアミノ化反応

[スポンサーリンク]

鉄触媒を用いたテトラゾロピリジンの分子内C(sp3)Hアミノ化が開発された。本反応はアザインドリンやピリドピリミジノン誘導体の新規合成法として期待される。

アザインドリン合成法

生物活性分子に窒素原子が存在すると、その分子の化学的性質は大きく変化する[1]。多くの生物活性分子の骨格であるインドリンと7-アザインドリンもその一つである。しかし、インドリンの合成法は数多く報告されているが、7-アザインドリンの合成法はほとんど報告されていない。数少ない例の1つにロジウム触媒によるアジド–メチレンシクロプロパンとイソニトリルの分子内環化反応がある(図 1A)[2]。本反応は、アジドから脱窒素を伴い生成した金属ナイトレノイドとイソニトリルが反応した後、メチレンシクロプロパンと[3+2]付加環化反応が進行する。

一方、テトラゾロピリジンは高温条件下脱窒素し、ナイトレンを生成することが古くから知られている(図 1B)[3]。この知見を利用し、2018年、Chattopadhyayらはイリジウム触媒によるテトラゾロピリジンの金属ナイトレノイドを経由したC(sp2)–Hアミノ化によりα-カルボリンの合成に成功した(図 1C)[4]。しかし本手法は、C(sp2)–H結合に比べて高い結合解離エネルギーを示すC(sp3)–H結合に対しては適用されていなかった。今回、Chattopadhyayらは鉄触媒を用いることでテトラゾロピリジンのC(sp3)–H結合を選択的にアミノ化し、アザインドリンの合成に成功した(図 1D)。また本手法は、アミド基をもつテトラゾロピリジンを用いることでピリドピリミジノンの形成も可能にする。

図1. (A)アザインドリン合成法 (B) テトラゾロピリジンからのナイトレン生成 (C)イリジウム触媒を用いたテトラゾロピリジンのC(sp2)–Hアミノ化 (D) 今回の反応

 

“Iron-Catalyzed Amination of Strong Aliphatic C(sp3)H Bonds”

Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc.2020, 142, 16211–16217.

DOI: 10.1021/jacs.0c07810

論文著者の紹介


研究者: Buddhadeb Chattopadhyay

研究者の経歴:

2001          BSc, Department of Chemistry, The University of Burdwan, India

2003          MSc, Department of Chemistry, Visva-Bharati Central University, India

2009          Ph.D, Department of Chemistry, University of Kalyani, India. (Professor K. C. Majumdar)

2009–2011                  Postdoc, Department of Chemistry, University of Illinois at Chicago, USA, (Professor Vladimir Gevorgyan)

2011–2014                  Postdoc, Department of Chemistry, Michigan State University, USA. (Professor Milton R. Smith III)

2014–2016                  Researcher, Ramanujan Faculty, Centre of Biomedical research (CBMR), India

2016–                             Assistant Professor, Centre of Biomedical research (CBMR), India

研究内容:遷移金属触媒を用いたC–H活性化、有機合成のための新規配位子の合成、金属ナイトレノイド、生医学分子の設計

論文の概要

本手法は鉄ポルフィリン触媒Fe(TPP)Cl存在下、Znを還元剤として添加し、テトラゾロピリジン1をベンゼン溶媒中120 °Cで反応させることで、アザインドリン2を生成する(図 2A)。基質適用範囲は広く、フェニル基やtBu基、金属を被毒するCl原子をもつ場合も高収率で2が得られる(1a1c)。また1dのような複数のC–H結合が存在する場合でも、位置選択的にアミノ化は進行する。一方で、アミド基をもつテトラゾロピリジン3を用いることで六員環化合物4の構築も可能にした。ジイソプロピルアミドやモルホリルアミドでも問題なく反応は進行する(3a,3b)。また窒素上に異なる置換基上のC–H結合がある場合、ベンジル位が位置選択的にアミノ化される(3c)。

さらにキラルな鉄ポルフィリン触媒を用いることでエナンチオ選択的なC(sp3)–H結合アミノ化反応に挑戦した(図2B)。その結果、不斉触媒の置換基を適切に変えることでエナンチオ優先的にアザインドリン2a’を得ることに成功した。

推定反応機構は以下の通りである(図2C)。まずFe触媒A’がZnにより1電子還元され、触媒活性種Aを生じる。次に1との平衡により生成するアジド化合物1’Aに配位してBを形成、続く脱窒素によってナイトレンラジカル中間体[5]Cを形成する。その後CのC–H結合が分子内で切断され中間体Dを与える。最後に分子内ラジカル環化反応によりアザインドリン2が得られる。

図2. (A) 基質適用範囲 (B) エナンチオ優先的C–Hアミノ化 (C) 推定反応機構

 

以上、鉄触媒を用いたテトラゾロピリジンの分子内C–Hアミノ化反応が開発された。本手法は容易に合成できるテトラゾロピリジンから合成困難なアザインドリン骨格やピリドピリミジノン骨格を構築できるため、全合成の分野への応用が期待される。

参考文献

  1. Richter, M.; Drown, B.; Riley, A. Nature 2017, 545, 299–304. DOI: 1038/nature22308
  2. Chen K.; Tang X.-Y.; Shi M. Chem. Commun. 2016, 52, 1967–1970. DOI: 10.1039/C5CC09236A
  3. (a) Harder, R.; Wentrup, C. Pyridylnitrenes. J. Am. Chem. Soc. 1976, 98, 1259–1260. DOI: 10.1021/ja00421a035 (b) Wentrup, C.; Winter, H. W. J. Am. Chem. Soc. 1980, 102, 6159–6161. DOI: 10.1021/ja00539a039 (c) Evans, R. A.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 4009–4017. DOI: 10.1021/ja9541645 (d) Kvaskoff, D.; Vosswinkel, M.; Wentrup, J. Am. Chem. Soc. 2011, 133, 5413–5424. DOI: 10.1021/ja111155r
  4. Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429–8433. DOI: 10.1021/jacs.8b05343
  5. (a)Hennessy, E. T.; Betley, T. A. Science 2013, Z340, 591-595. DOI: 1126/science.1233701 (b) Kuijpers, P. F.; van der Vlugt, J. I.; Schneider, S.; de Bruin, B.; Chem. Eur. J. 2017, 23, 13819. DOI: 10.1002/chem.201702537

関連書籍

[amazonjs asin=”3527343407″ locale=”JP” title=”C-H Activation for Asymmetric Synthesis”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 第24回ケムステVシンポ「次世代有機触媒」を開催します!
  2. アルケンのE/Zをわける
  3. 酵素触媒によるアルケンのアンチマルコフニコフ酸化
  4. 高分子を”見る” その2
  5. 高分子マテリアルズ・インフォマティクスのための分子動力学計算自動…
  6. 水素移動を制御する精密な分子設計によるNHC触媒の高活性化
  7. 広範な反応性代謝物を検出する蛍光トラッピング剤 〜毒性の黒幕を捕…
  8. サムライ化学者高峰譲吉「さくら、さくら」劇場鑑賞券プレゼント!

注目情報

ピックアップ記事

  1. 有機化合物で情報を記録する未来は来るか
  2. ホフマン・レフラー・フレイターク反応 Hofmann-Loffler-Freytag Reaction
  3. 不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応
  4. 酵素の分子個性のダイバーシティは酵素進化のバロメーターとなる
  5. 2009年1月人気化学書籍ランキング
  6. 稲垣伸二 Shinji Inagaki
  7. シラフィン silaffin
  8. 分子構造を 3D で観察しよう (2)
  9. Ni(0)/SPoxIm錯体を利用した室温におけるCOの可逆的化学吸着反応
  10. Dead Endを回避せよ!「全合成・極限からの一手」⑧

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

化粧品用シリコーン代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

第54回ケムステVシンポ「構造から機能へ:ケイ素系元素ブロック材料研究の最前線」を開催します!

今年も暑くなってきましたね! さて、本記事は、第54回ケムステVシンポジウムの開催告知です! 暑さに…

有機合成化学協会誌2025年7月号:窒素ドープカーボン担持金属触媒・キュバン/クネアン・電解合成・オクタフルオロシクロペンテン・Mytilipin C

有機合成化学協会が発行する有機合成化学協会誌、2025年7月号がオンラインで公開されています。…

ルイス酸性を持つアニオン!?遷移金属触媒の新たなカウンターアニオン”BBcat”

第667回のスポットライトリサーチは、東京大学大学院工学系研究科 野崎研究室 の萬代遼さんにお願いし…

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP