[スポンサーリンク]

化学者のつぶやき

鉄触媒を用いたテトラゾロピリジンのC(sp3)–Hアミノ化反応

[スポンサーリンク]

鉄触媒を用いたテトラゾロピリジンの分子内C(sp3)Hアミノ化が開発された。本反応はアザインドリンやピリドピリミジノン誘導体の新規合成法として期待される。

アザインドリン合成法

生物活性分子に窒素原子が存在すると、その分子の化学的性質は大きく変化する[1]。多くの生物活性分子の骨格であるインドリンと7-アザインドリンもその一つである。しかし、インドリンの合成法は数多く報告されているが、7-アザインドリンの合成法はほとんど報告されていない。数少ない例の1つにロジウム触媒によるアジド–メチレンシクロプロパンとイソニトリルの分子内環化反応がある(図 1A)[2]。本反応は、アジドから脱窒素を伴い生成した金属ナイトレノイドとイソニトリルが反応した後、メチレンシクロプロパンと[3+2]付加環化反応が進行する。

一方、テトラゾロピリジンは高温条件下脱窒素し、ナイトレンを生成することが古くから知られている(図 1B)[3]。この知見を利用し、2018年、Chattopadhyayらはイリジウム触媒によるテトラゾロピリジンの金属ナイトレノイドを経由したC(sp2)–Hアミノ化によりα-カルボリンの合成に成功した(図 1C)[4]。しかし本手法は、C(sp2)–H結合に比べて高い結合解離エネルギーを示すC(sp3)–H結合に対しては適用されていなかった。今回、Chattopadhyayらは鉄触媒を用いることでテトラゾロピリジンのC(sp3)–H結合を選択的にアミノ化し、アザインドリンの合成に成功した(図 1D)。また本手法は、アミド基をもつテトラゾロピリジンを用いることでピリドピリミジノンの形成も可能にする。

図1. (A)アザインドリン合成法 (B) テトラゾロピリジンからのナイトレン生成 (C)イリジウム触媒を用いたテトラゾロピリジンのC(sp2)–Hアミノ化 (D) 今回の反応

 

“Iron-Catalyzed Amination of Strong Aliphatic C(sp3)H Bonds”

Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc.2020, 142, 16211–16217.

DOI: 10.1021/jacs.0c07810

論文著者の紹介


研究者: Buddhadeb Chattopadhyay

研究者の経歴:

2001          BSc, Department of Chemistry, The University of Burdwan, India

2003          MSc, Department of Chemistry, Visva-Bharati Central University, India

2009          Ph.D, Department of Chemistry, University of Kalyani, India. (Professor K. C. Majumdar)

2009–2011                  Postdoc, Department of Chemistry, University of Illinois at Chicago, USA, (Professor Vladimir Gevorgyan)

2011–2014                  Postdoc, Department of Chemistry, Michigan State University, USA. (Professor Milton R. Smith III)

2014–2016                  Researcher, Ramanujan Faculty, Centre of Biomedical research (CBMR), India

2016–                             Assistant Professor, Centre of Biomedical research (CBMR), India

研究内容:遷移金属触媒を用いたC–H活性化、有機合成のための新規配位子の合成、金属ナイトレノイド、生医学分子の設計

論文の概要

本手法は鉄ポルフィリン触媒Fe(TPP)Cl存在下、Znを還元剤として添加し、テトラゾロピリジン1をベンゼン溶媒中120 °Cで反応させることで、アザインドリン2を生成する(図 2A)。基質適用範囲は広く、フェニル基やtBu基、金属を被毒するCl原子をもつ場合も高収率で2が得られる(1a1c)。また1dのような複数のC–H結合が存在する場合でも、位置選択的にアミノ化は進行する。一方で、アミド基をもつテトラゾロピリジン3を用いることで六員環化合物4の構築も可能にした。ジイソプロピルアミドやモルホリルアミドでも問題なく反応は進行する(3a,3b)。また窒素上に異なる置換基上のC–H結合がある場合、ベンジル位が位置選択的にアミノ化される(3c)。

さらにキラルな鉄ポルフィリン触媒を用いることでエナンチオ選択的なC(sp3)–H結合アミノ化反応に挑戦した(図2B)。その結果、不斉触媒の置換基を適切に変えることでエナンチオ優先的にアザインドリン2a’を得ることに成功した。

推定反応機構は以下の通りである(図2C)。まずFe触媒A’がZnにより1電子還元され、触媒活性種Aを生じる。次に1との平衡により生成するアジド化合物1’Aに配位してBを形成、続く脱窒素によってナイトレンラジカル中間体[5]Cを形成する。その後CのC–H結合が分子内で切断され中間体Dを与える。最後に分子内ラジカル環化反応によりアザインドリン2が得られる。

図2. (A) 基質適用範囲 (B) エナンチオ優先的C–Hアミノ化 (C) 推定反応機構

 

以上、鉄触媒を用いたテトラゾロピリジンの分子内C–Hアミノ化反応が開発された。本手法は容易に合成できるテトラゾロピリジンから合成困難なアザインドリン骨格やピリドピリミジノン骨格を構築できるため、全合成の分野への応用が期待される。

参考文献

  1. Richter, M.; Drown, B.; Riley, A. Nature 2017, 545, 299–304. DOI: 1038/nature22308
  2. Chen K.; Tang X.-Y.; Shi M. Chem. Commun. 2016, 52, 1967–1970. DOI: 10.1039/C5CC09236A
  3. (a) Harder, R.; Wentrup, C. Pyridylnitrenes. J. Am. Chem. Soc. 1976, 98, 1259–1260. DOI: 10.1021/ja00421a035 (b) Wentrup, C.; Winter, H. W. J. Am. Chem. Soc. 1980, 102, 6159–6161. DOI: 10.1021/ja00539a039 (c) Evans, R. A.; Wong, M. W.; Wentrup, C. J. Am. Chem. Soc. 1996, 118, 4009–4017. DOI: 10.1021/ja9541645 (d) Kvaskoff, D.; Vosswinkel, M.; Wentrup, J. Am. Chem. Soc. 2011, 133, 5413–5424. DOI: 10.1021/ja111155r
  4. Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429–8433. DOI: 10.1021/jacs.8b05343
  5. (a)Hennessy, E. T.; Betley, T. A. Science 2013, Z340, 591-595. DOI: 1126/science.1233701 (b) Kuijpers, P. F.; van der Vlugt, J. I.; Schneider, S.; de Bruin, B.; Chem. Eur. J. 2017, 23, 13819. DOI: 10.1002/chem.201702537

関連書籍

[amazonjs asin=”3527343407″ locale=”JP” title=”C-H Activation for Asymmetric Synthesis”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 決め手はジアゾアルケン!!芳香環の分子内1,3-双極子付加環化反…
  2. イオン性置換基を有するホスホール化合物の発光特性
  3. 即戦力のコンパクトFTIR:IRSpirit
  4. アメリカ化学留学 ”実践編 ー英会話の勉強ーR…
  5. 最強の文献管理ソフトはこれだ!
  6. 第6回ICReDD国際シンポジウム開催のお知らせ
  7. アルケンとニトリルを相互交換する
  8. 「遠隔位のC-H結合を触媒的に酸化する」―イリノイ大学アーバナ・…

注目情報

ピックアップ記事

  1. 【第14回Vシンポ特別企画】講師紹介:宮島 大吾 先生
  2. リチウムイオン電池製造の勘どころ【終了】
  3. ルーシェ還元 Luche Reduction
  4. 外国人研究者あるある
  5. 口頭発表での緊張しない6つのヒント
  6. メルク、主力薬販売停止で15%減益
  7. シクロヘキサンの片面を全てフッ素化する
  8. 電気刺激により電子伝導性と白色発光を発現するヨウ素内包カーボンナノリング
  9. 2015年ケムステ人気記事ランキング
  10. 第59回「希土類科学の楽しさを広めたい」長谷川靖哉 教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年11月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

分極したBe–Be結合で広がるベリリウムの化学

Be–Be結合をもつ安定な錯体であるジベリロセンの配位子交換により、分極したBe–Be結合形成を初め…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP