[スポンサーリンク]

化学者のつぶやき

デカすぎる置換基が不安定なリンホウ素二重結合を優しく包み込む

[スポンサーリンク]

不安定なホスファボレンを速度論的にのみ安定化する分子設計により、本来の電子状態のリンホウ素二重結合をもつホスファボレンの合成が初めて報告された。合成したホスファボレンのリンホウ素結合は、隣接基による電子的な影響を無視できるため高い二重結合性をもつ。

いかにして不安定なホスファボレンを合成するのか?

13族と15族元素間の二重結合は、14族元素同士の二重結合と等電子関係ではあるが、その特異な物性や反応性に興味がもたれ、精力的に研究されてきた[1]。中でもリンホウ素二重結合は、周期の異なるリンとホウ素のp軌道の重なりが小さいため、π結合が切れやすい(図1A)[2]。この弱いπ結合に加え、リンの非共有電子対およびホウ素の空のp軌道の存在により自発的に多量化するため、不安定な結合である。そのため、リンホウ素二重結合の形成は長年の課題であった。

リンホウ素二重結合をもつホスファボレンの生成が初めて確認されたのは、1986年、Cowleyらの報告である(図1B)[3]。彼らは環状ジホスファボレタンの熱分解からホスファボレンの生成を質量分析で確認した。その後、ホスファボレンの安定化法がいくつか見出され、その合成と単離が達成されている。1990年にNöthら[4]が、2006年にはPowerら[5]がそれぞれルイス酸/塩基により安定化されたホスファボレンの合成、2022年にはLiuらがPush–Pull効果により安定化されたホスファボレンの合成を報告した(図1C)[6]。しかし、これらの安定化法はリンホウ素二重結合の電子構造の変化が無視できないため、本来の電子構造をもつホスファボレンの合成は未だ達成されていない。

ブリストル大学のMannersらは、速度論的にのみホスファボレンを安定化すれば、電子構造の変化を無視できるリンホウ素二重結合が形成できると考えた。そこで、かさ高い置換基として2,6-ビス(トリイソプロピルフェニル)-3,5-ジイソプロピルフェニル基[7]をもつホスファボレンを設計し、合成に取り組んだ(図1C右下)。

図1. (A) リンホウ素二重結合形成における課題 (B) ホスファボレンの生成を確認した最初の報告例 (C) 安定化されたホスファボレンの合成例および今回Mannersらが合成したホスファボレン

 

“A Crystalline Monomeric Phosphaborene”
LaPierre, E. A.; Patrick, B. O.; Manners, I. J. Am. Chem. Soc. 2023, 145, 7107–7112
DOI: 10.1021/jacs.3c01942

論文著者の紹介

研究者:Ian Manners
研究者の経歴:
1979–1982 B.Sc. in Chemistry, University of Bristol, UK
1982–1985 Ph.D. in Chemistry, University of Bristol, UK (Prof. Neil G. Connelly)
1986–1987 Postdoc, University of Aachen, Germany (Prof. Peter Paetzold)
1988–1990 Research Associate, Pennsylvania State University, USA (Prof. Harry R. Allcock)
1990–1994 Assistant Professor, University of Toronto, Canada
1994–1995 Associate Professor, University of Toronto, Canada
1995–2006 Professor, University of Toronto, Canada
2006–                            Professor, University of Bristol, UK
研究内容:触媒反応を用いた高分子合成、結晶化駆動型自己集積体の合成

論文の概要

図2Aにホスファボレン4の合成経路を示す。まず、ホスフィンカリウム1[8]とジブロモボロン2[9]をトルエン中で反応させ、ホスファボラン3を得た。続いて、得られた3に塩基を作用させ、所望のホスファボレン4の合成を達成した。単結晶X線構造解析により、合成したホスファボレン4のリンホウ素間の結合長は1.741 Åであり、これまで報告されたどのホスファボレンよりも短い値であった。また、4のWiberg結合次数はリンホウ素結合が1.9707、窒素ホウ素結合が0.9526であった。これらは4のリンホウ素結合は二重結合性、窒素ホウ素結合は単結合性が高いことを示している。すなわち、窒素の非共有電子対のホウ素への押し込みによるリンホウ素結合の二重結合性の低下はなく、電子構造の変化を無視できるリンホウ素二重結合の形成に成功した初の報告例となった。

次に、反応性の高い分子との反応からホスファボレン4のリンホウ素二重結合の性質を調査した(図2B)。4はDMAPと反応し4·DMAPが生成した。また、メタノールを作用させると、4は一級ホスフィンとトリメトキシボロンに分解した。一方で、一酸化炭素および二酸化炭素、水素、TMSN3、HCCPh、Ph2COとは反応しなかった。この反応性はDFT計算による軌道解析から説明できる。4のHOMOは立体的に保護されたリンホウ素二重結合に局在している。一方LUMOは、主にホウ素の空のp軌道からなるため、リンと比べ立体的に保護されていない。したがって、HOMOが関与する反応は進行しにくく、LUMOのみが関与する反応は進行しやすかったと考えられる。

図2. (A) ホスファボレン4の合成 (B) ホスファボレン4の反応性の調査および分子軌道解析

以上、本来の電子状態のリンホウ素二重結合をもつホスファボレンの合成が達成された。電子的な影響を受けていないリンホウ素二重結合の詳細な性質解明の続報に期待したい。デカすぎる置換基の優しい抱擁に、不安定だったリンホウ素二重結合も安心して安定化しているはずである。

参考文献

  1. Malik, M. A.; Afzaal, M.; O’Brien, P. Precursor Chemistry for Main Group Elements in Semiconducting Materials. Chem. Rev. 2010, 110, 4417–4446. DOI: 10.1021/cr900406f
  2. Dankert, F.; Hering-Junghans, C. Heavier Group 13/15 Multiple Bond Systems: Synthesis, Structure, and Chemical Bond Activation. Chem. Commun.2022, 58, 1242–1262. DOI: 10.1039/D1CC06518A
  3. Arif, A. M.; Boggs, J. E.; Cowley, A. H.; Lee, J. G.; Pakulski, M.; Power, J. M. Production of a Boraphosphene (RB:PR’) in the Vapor Phase by Thermolysis of a Sterically Encumbered Diphosphadiboretane. J. Am. Chem. Soc. 1986, 108, 6083–6084. DOI: 10.1021/ja00279a091
  4. Linti, G.; Nöth, H.; Polborn, K.; Paine, R. T. An Allene-analogous Boranylidenephosphane with B=P Double Bond: 1,1-Diethylpropyl(2,2,6,6-tetramethylpiperidino)-boranylidenephosphane-P-pentacarbonylchromium. Angew. Chem., Int. Ed. 1990, 29, 682–684. DOI: 10.1002/anie.199006821
  5. Rivard, E.; Merrill, W. A.; Fettinger, J. C.; Power, P. P. A Donor-Stabilization Strategy for the Preparation of Compounds Featuring P=B and As=B Double Bonds. Chem. Commun. 2006, 36, 3800−2. DOI: 10.1039/B609748K
  6. Li, J.; Lu, Z.; Liu, L. L. A Free Phosphaborene Stable at Room Temperature. J. Am. Chem. Soc. 2022, 144, 23691–23697. DOI: 10.1021/jacs.2c11878
  7. Stanciu, C.; Richards, A. F.; Fettinger, J. C.; Brynda, M.; Power, P. P. Synthesis and Characterization of New, Modified Terphenyl Ligands: Increasing the Rotational Barrier for Flanking Rings. Organomet. Chem. 2006, 691, 2540–2545. DOI: 10.1016/j.jorganchem.2006.01.046
  8. Queen, J. D.; Bursch, M.; Seibert, J.; Maurer, L. R.; Ellis, B. D.; Fettinger, J. C.; Grimme, S.; Power, P. P. Isolation and Computational Studies of a Series of Terphenyl Substituted Diplumbynes with Ligand Dependent Lead-Lead Multiple-Bonding Character. J. Am. Chem. Soc. 2019, 141, 14370–14383. DOI: 10.1021/jacs.9b07072
  9. Escudie, J.; Couret, C.; Lazraq, M.; Garrigues, B. New Routes to 2,4-Diphospha-1,3-diboretanes. React. Inorg. Met.-Org. Chem. 1987, 17, 379–384. DOI: 10.1080/00945718708059446
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. とある化学者の海外研究生活:スイス留学編
  2. 第53回ケムステVシンポ「化学×イノベーション -女性研究者が拓…
  3. 虫歯とフッ素のお話② ~歯磨き粉のフッ素~
  4. ネコがマタタビにスリスリする反応には蚊除け効果があった!
  5. 芳香族性に関する新概念と近赤外吸収制御への応用
  6. 分析化学科
  7. 非常に小さな反転障壁を示す有機リン化合物の合成
  8. 普通じゃ満足できない元素マニアのあなたに:元素手帳2016

注目情報

ピックアップ記事

  1. d8 Cu(III) の謎 –配位子場逆転–
  2. 化学の力で迷路を解く!
  3. 可視光増感型電子移動機構に基づく強還元触媒系の構築
  4. Density Functional Theory in Quantum Chemistry
  5. 最強の文献管理ソフトはこれだ!
  6. 第93回―「発光金属錯体と分子センサーの研究」Cristina Lagunas教授
  7. バーゼル Basel:製薬・農薬・化学が集まる街
  8. デーリング・ラフラム アレン合成 Doering-LaFlamme Allene Synthesis
  9. 化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~
  10. PEG化合物を簡単に精製したい?それなら塩化マグネシウム!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP