[スポンサーリンク]

化学者のつぶやき

デカすぎる置換基が不安定なリンホウ素二重結合を優しく包み込む

[スポンサーリンク]

不安定なホスファボレンを速度論的にのみ安定化する分子設計により、本来の電子状態のリンホウ素二重結合をもつホスファボレンの合成が初めて報告された。合成したホスファボレンのリンホウ素結合は、隣接基による電子的な影響を無視できるため高い二重結合性をもつ。

いかにして不安定なホスファボレンを合成するのか?

13族と15族元素間の二重結合は、14族元素同士の二重結合と等電子関係ではあるが、その特異な物性や反応性に興味がもたれ、精力的に研究されてきた[1]。中でもリンホウ素二重結合は、周期の異なるリンとホウ素のp軌道の重なりが小さいため、π結合が切れやすい(図1A)[2]。この弱いπ結合に加え、リンの非共有電子対およびホウ素の空のp軌道の存在により自発的に多量化するため、不安定な結合である。そのため、リンホウ素二重結合の形成は長年の課題であった。

リンホウ素二重結合をもつホスファボレンの生成が初めて確認されたのは、1986年、Cowleyらの報告である(図1B)[3]。彼らは環状ジホスファボレタンの熱分解からホスファボレンの生成を質量分析で確認した。その後、ホスファボレンの安定化法がいくつか見出され、その合成と単離が達成されている。1990年にNöthら[4]が、2006年にはPowerら[5]がそれぞれルイス酸/塩基により安定化されたホスファボレンの合成、2022年にはLiuらがPush–Pull効果により安定化されたホスファボレンの合成を報告した(図1C)[6]。しかし、これらの安定化法はリンホウ素二重結合の電子構造の変化が無視できないため、本来の電子構造をもつホスファボレンの合成は未だ達成されていない。

ブリストル大学のMannersらは、速度論的にのみホスファボレンを安定化すれば、電子構造の変化を無視できるリンホウ素二重結合が形成できると考えた。そこで、かさ高い置換基として2,6-ビス(トリイソプロピルフェニル)-3,5-ジイソプロピルフェニル基[7]をもつホスファボレンを設計し、合成に取り組んだ(図1C右下)。

図1. (A) リンホウ素二重結合形成における課題 (B) ホスファボレンの生成を確認した最初の報告例 (C) 安定化されたホスファボレンの合成例および今回Mannersらが合成したホスファボレン

 

“A Crystalline Monomeric Phosphaborene”
LaPierre, E. A.; Patrick, B. O.; Manners, I. J. Am. Chem. Soc. 2023, 145, 7107–7112
DOI: 10.1021/jacs.3c01942

論文著者の紹介

研究者:Ian Manners
研究者の経歴:
1979–1982 B.Sc. in Chemistry, University of Bristol, UK
1982–1985 Ph.D. in Chemistry, University of Bristol, UK (Prof. Neil G. Connelly)
1986–1987 Postdoc, University of Aachen, Germany (Prof. Peter Paetzold)
1988–1990 Research Associate, Pennsylvania State University, USA (Prof. Harry R. Allcock)
1990–1994 Assistant Professor, University of Toronto, Canada
1994–1995 Associate Professor, University of Toronto, Canada
1995–2006 Professor, University of Toronto, Canada
2006–                            Professor, University of Bristol, UK
研究内容:触媒反応を用いた高分子合成、結晶化駆動型自己集積体の合成

論文の概要

図2Aにホスファボレン4の合成経路を示す。まず、ホスフィンカリウム1[8]とジブロモボロン2[9]をトルエン中で反応させ、ホスファボラン3を得た。続いて、得られた3に塩基を作用させ、所望のホスファボレン4の合成を達成した。単結晶X線構造解析により、合成したホスファボレン4のリンホウ素間の結合長は1.741 Åであり、これまで報告されたどのホスファボレンよりも短い値であった。また、4のWiberg結合次数はリンホウ素結合が1.9707、窒素ホウ素結合が0.9526であった。これらは4のリンホウ素結合は二重結合性、窒素ホウ素結合は単結合性が高いことを示している。すなわち、窒素の非共有電子対のホウ素への押し込みによるリンホウ素結合の二重結合性の低下はなく、電子構造の変化を無視できるリンホウ素二重結合の形成に成功した初の報告例となった。

次に、反応性の高い分子との反応からホスファボレン4のリンホウ素二重結合の性質を調査した(図2B)。4はDMAPと反応し4·DMAPが生成した。また、メタノールを作用させると、4は一級ホスフィンとトリメトキシボロンに分解した。一方で、一酸化炭素および二酸化炭素、水素、TMSN3、HCCPh、Ph2COとは反応しなかった。この反応性はDFT計算による軌道解析から説明できる。4のHOMOは立体的に保護されたリンホウ素二重結合に局在している。一方LUMOは、主にホウ素の空のp軌道からなるため、リンと比べ立体的に保護されていない。したがって、HOMOが関与する反応は進行しにくく、LUMOのみが関与する反応は進行しやすかったと考えられる。

図2. (A) ホスファボレン4の合成 (B) ホスファボレン4の反応性の調査および分子軌道解析

以上、本来の電子状態のリンホウ素二重結合をもつホスファボレンの合成が達成された。電子的な影響を受けていないリンホウ素二重結合の詳細な性質解明の続報に期待したい。デカすぎる置換基の優しい抱擁に、不安定だったリンホウ素二重結合も安心して安定化しているはずである。

参考文献

  1. Malik, M. A.; Afzaal, M.; O’Brien, P. Precursor Chemistry for Main Group Elements in Semiconducting Materials. Chem. Rev. 2010, 110, 4417–4446. DOI: 10.1021/cr900406f
  2. Dankert, F.; Hering-Junghans, C. Heavier Group 13/15 Multiple Bond Systems: Synthesis, Structure, and Chemical Bond Activation. Chem. Commun.2022, 58, 1242–1262. DOI: 10.1039/D1CC06518A
  3. Arif, A. M.; Boggs, J. E.; Cowley, A. H.; Lee, J. G.; Pakulski, M.; Power, J. M. Production of a Boraphosphene (RB:PR’) in the Vapor Phase by Thermolysis of a Sterically Encumbered Diphosphadiboretane. J. Am. Chem. Soc. 1986, 108, 6083–6084. DOI: 10.1021/ja00279a091
  4. Linti, G.; Nöth, H.; Polborn, K.; Paine, R. T. An Allene-analogous Boranylidenephosphane with B=P Double Bond: 1,1-Diethylpropyl(2,2,6,6-tetramethylpiperidino)-boranylidenephosphane-P-pentacarbonylchromium. Angew. Chem., Int. Ed. 1990, 29, 682–684. DOI: 10.1002/anie.199006821
  5. Rivard, E.; Merrill, W. A.; Fettinger, J. C.; Power, P. P. A Donor-Stabilization Strategy for the Preparation of Compounds Featuring P=B and As=B Double Bonds. Chem. Commun. 2006, 36, 3800−2. DOI: 10.1039/B609748K
  6. Li, J.; Lu, Z.; Liu, L. L. A Free Phosphaborene Stable at Room Temperature. J. Am. Chem. Soc. 2022, 144, 23691–23697. DOI: 10.1021/jacs.2c11878
  7. Stanciu, C.; Richards, A. F.; Fettinger, J. C.; Brynda, M.; Power, P. P. Synthesis and Characterization of New, Modified Terphenyl Ligands: Increasing the Rotational Barrier for Flanking Rings. Organomet. Chem. 2006, 691, 2540–2545. DOI: 10.1016/j.jorganchem.2006.01.046
  8. Queen, J. D.; Bursch, M.; Seibert, J.; Maurer, L. R.; Ellis, B. D.; Fettinger, J. C.; Grimme, S.; Power, P. P. Isolation and Computational Studies of a Series of Terphenyl Substituted Diplumbynes with Ligand Dependent Lead-Lead Multiple-Bonding Character. J. Am. Chem. Soc. 2019, 141, 14370–14383. DOI: 10.1021/jacs.9b07072
  9. Escudie, J.; Couret, C.; Lazraq, M.; Garrigues, B. New Routes to 2,4-Diphospha-1,3-diboretanes. React. Inorg. Met.-Org. Chem. 1987, 17, 379–384. DOI: 10.1080/00945718708059446

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 準結晶的なナノパーティクルスーパーラティス
  2. アメリカで Ph.D. を取る –奨学金を申請するの巻–
  3. 究極のエネルギーキャリアきたる?!
  4. Dead Endを回避せよ!「全合成・極限からの一手」⑥
  5. 個性あるTOC その②
  6. キノリンをLED光でホップさせてインドールに
  7. 4歳・2歳と学会・領域会議に参加してみた ①
  8. 第95回日本化学会付設展示会ケムステキャンペーン!Part I

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ガラス器具の洗浄にも働き方改革を!
  2. 水素化ホウ素ナトリウム Sodium Borohydride
  3. 光と熱で固体と液体を行き来する金属錯体
  4. エチレンを離して!
  5. マツタケオール mushroom alcohol
  6. バイオマス燃料・化学品の合成と触媒の技術動向【終了】
  7. 虫歯退治に3種の抗菌薬
  8. 溶媒としてアルコールを検討しました(笑)
  9. 透明なカニ・透明な紙:バイオナノファイバーの世界
  10. モノクローナル抗体を用いた人工金属酵素によるエナンチオ選択的フリーデル・クラフツ反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年7月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

“見た目はそっくり、中身は違う”C-グリコシド型擬糖鎖/複合糖質を開発

第598回のスポットライトリサーチは、九州大学大学院薬学府(平井研究室)博士後期課程3年の森山 貴博…

触媒化学との「掛け算」によって展開される広範な研究

前回の記事でご紹介したとおり、触媒化学融合研究センター(触媒センター)では「掛け…

【Q&Aシリーズ❸ 技術者・事業担当者向け】 マイクロ波プロセスのスケールアップについて

<内容>※本セミナーは、技術者および事業担当者向けです。今年に入って全3回に…

「産総研・触媒化学融合研究センター」ってどんな研究所?

2013年に産総研内に設立された触媒化学融合研究センターは、「触媒化学」を中心に据えつつ、他分野と「…

低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?

第597回のスポットライトリサーチは、北海道大学大学院総合化学院 有機化学第一研究室(鈴木孝紀研)の…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/03/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

フッ素の特性が織りなす分子変換・材料化学(CSJカレントレビュー:47)

(さらに…)…

日本薬学会第144回年会「有機合成化学の若い力」を開催します!

卒業論文などは落ち着いた所が多いでしょうか。入試シーズンも終盤に差し掛かり、残すところは春休…

ホウ酸団子のはなし

Tshozoです。暇を見つけては相変わらず毎日ツイッターでネタ探しをしているのですが、その中で下…

活性酸素を効率よく安定に生成できる分子光触媒 〜ポルフィリンと分子状タングステン酸化物を複合化〜

第596回のスポットライトリサーチは、東京大学 大学院工学系研究科(山口研究室)修士課程 2年の山口…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP