[スポンサーリンク]

化学者のつぶやき

3つのラジカルを自由自在!アルケンのアリール–アルキル化反応

[スポンサーリンク]

アルケンの位置選択的なアリール–アルキル化反応が報告された。ラジカルソーティングを用いた三種類のラジカルの反応性の制御が鍵である。

アルケンの二官能基化反応

アルケンがもつ2つの反応点を同時に官能基化する二官能基化反応は近年精力的に研究されている[1]。しかし、適用できる基質は配向基や電子的な偏りをもつアルケンに限られていた。Nevadoらは2019年、ニッケル触媒を用いて不活性アルケンの初の還元的アリール–アルキル化反応を報告した(図1A)。本反応では、アルケンへの三級ラジカルの付加に続くニッケル触媒を用いたアリール化により、級数の大きい炭素側にアリール基が付加する位置選択的アリール–アルキル化反応化を達成した[2]。しかし、逆の位置選択性を示すアルケンのアリール-アルキル化反応は未だ報告されていない。

一方、著者らは以前、“ラジカルソーティング”を用いたアルケンのジアルキル化反応を開発した(図1B)[3]。ラジカルソーティングは、ニッケル触媒とラジカルの結合形成前後のエネルギー差を利用して、より低級のラジカルを選別する手法である。ラジカルソーティングで生成したニッケル-アルキル錯体は、その後ホモリティック置換(SH2)反応により、クロスカップリング体を与える。

今回、著者らはラジカルソーティングを用いることで、級数の小さい炭素にアリール基が導入される、従来とは逆の位置選択性を示すアルケンのアリール–アルキル化反応を達成できると考えた。すなわち、系中で生じる一級アルキルラジカルがニッケル触媒と反応したのち、アリールラジカルとアルケンから生成した三級ラジカルとのSH2反応により所望のアリール–アルキル化体が生成すると考えた。

図1. (A) アルケンの二官能基化反応 (B) ラジカルソーティングを用いたアルケンのジアルキル化反応 (C) 本研究

 

“Triple Radical Sorting: Aryl–Alkylation of Alkenes”

Wang, J. Z.; Mao, E.; Nguyen, J. A.; Lyon, W. L.; MacMillan, D. W. C. J. Am. Chem. Soc. 2024, 146, 15693–15700. DOI: 10.1021/jacs.4c05744

論文著者の紹介

研究者:David W. C. MacMillan

研究者の経歴

1991                              B.S., University of Glasgow, UK
1996                              Ph.D., University of California, Irvine, USA (Prof. Larry E. Overman) 
1996–1998                              Postdoc, Harvard University, USA (Prof. David A. Evans)
1998–2000                              Assistant Professor, University of California, Berkeley, USA
2000–2004                              Associate Professor, California Institute of Technology, USA
2004–2006                              Earle C. Anthony Professor of Chemistry, California Institute of Technology, USA
2006–2011                              A. Barton Hepburn Professor of Chemistry, Princeton University, USA
2006–                                         Director of the Merck Center for Catalysis, Princeton University, USA
2011                                           James S. McDonnell Distinguished University Professor of Chemistry, Princeton University, USA

研究内容:有機触媒を用いた不斉反応の開発、可視光レドックス触媒を利用した反応開発

論文の概要

アセトニトリル中、イリジウム触媒およびニッケル触媒存在下、AdmnSilaneを添加し、可視光を照射することでアルケン1のアリール–アルキル化が進行した(図2A)。本反応は末端アルケン1aから良好な収率で4aを与えるほか、ピリミジン(4b)など種々のアリールブロミドを用いた場合についてもアリール–アルキル化反応は進行した。また、アルキル基にはCD3基(4c)、エチル基(4d)、メトキシメチル(MOM)基(4e)などの導入にも成功した。

著者らの想定反応機構は以下の通りである(図2B)。まず可視光照射により励起された可視光励起触媒(*IrIII)がシランを還元しシリルラジカルが生じる。次にシリルラジカルによるアリールブロミド2のXATによりアリールラジカル5が生成し、アルケン1との反応によりアルキルラジカル中間体6を与える。一方、IrIIによる還元によって、N-ヒドロキシフタルイミドエステル3から一級ラジカル7が生成する。その後ニッケル触媒8に付加し、ニッケルアルキル錯体9が形成される。最後に6と9のSH2反応によって所望のアリール–アルキル化体4が得られる。

図2. (A) 最適条件と基質適用範囲 (B) 想定反応機構

 

以上、三種類のラジカルを巧みに制御したアルケンのアリール–アルキル化反応が報告された。”ラジカルソーティング”を用いた多成分反応のさらなる発展に期待である。

 参考文献

  1.  (a) Derosa, J.; Apolinar, O.; Kang, T.; Tran, V. T.; Engle, K. M. Recent Developments in Nickel-Catalyzed Intermolecular Dicarbofunctionalization of Alkenes. Chem. Sci. 2020, 11, 4287–4296. DOI: 10.1039/C9SC06006E (b) Fumagalli, G.; Boyd, S.; Greaney, M. F. Oxyarylation and Aminoarylation of Styrenes Using Photoredox Catalysis. Org. Lett. 2013, 15, 4398–4401. DOI: 10.1021/ol401940c (c) Hari, D. P.; Hering, T.; Konig, B. The Photoredox-Catalyzed Meerwein Addition Reaction: Intermolecular Amino-Arylation of Alkenes. Angew. Chem., Int. Ed. 2014, 53, 725–728. DOI: 10.1002/anie.201307051 (d) Bunescu, A.; Abdelhamid, Y.; Gaunt, M. J. Multicomponent alkene azidoarylation by anion-mediated dual catalysis. Nature 2021, 598, 597–60. DOI: 10.1038/s41586-021-03980-8 (e) Cai, Y.; Chatterjee, S.; Ritter, T. Photoinduced Copper- Catalyzed Late-Stage Azidoarylation of Alkenes via Arylthianthrenium Salts. J. Am. Chem. Soc. 2023, 145, 13542–13548. DOI: 10.1021/jacs.3c04016 (f) Zhang, W.; Liu, T.; Ang, H. T.; Luo, P.; Lei, Z.; Luo, X.; Koh, M. J.; Wu, J. Modular and Practical 1,2-Aryl(Alkenyl) Heteroatom Functionalization of Alkenes through Iron/Photoredox Dual Catalysis. Angew. Chem., Int. Ed. 2023, 62, No. e202310978. DOI: 10.1002/anie.202310978
  2.  Shu, W.; García-Domínguez, A.; Quirós, M. T.; Mondal, R.; Cárdenas, D. J.; Nevado, C. Ni-Catalyzed Reductive Dicarbofunctionalization of Nonactivated Alkenes: Scope and Mechanistic Insights. J. Am. Chem. Soc. 2019, 141, 13812–13821. DOI: 10.1021/jacs.9b02973
  3. Wang, J. Z.; Lyon, W. L.; MacMillan, D. W. C. Alkene Dialkylation by Triple Radical Sorting. Nature 2024, 628, 104–109. DOI: 10.1038/s41586-024-07165-x
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 反応化学と生命科学の融合で新たなチャレンジへ【ケムステ×Hey!…
  2. 2007年度ノーベル医学・生理学賞決定!
  3. 有機合成化学協会誌2023年6月号:環状ペプチド天然物・フロキサ…
  4. 世界の「イケメン人工分子」① ~ 分子ボロミアンリング ~
  5. 有機反応を俯瞰する ー付加脱離
  6. 研究室での英語【Part 3】
  7. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析…
  8. 化学者だって数学するっつーの! :シュレディンガー方程式と複素数…

注目情報

ピックアップ記事

  1. 論文執筆で気をつけたいこと20(2)
  2. 分子集合の力でマイクロスケールの器をつくる
  3. 甘草は虫歯を予防する?!
  4. ねじれがあるアミド
  5. サイエンス・コミュニケーションをマスターする
  6. 近況報告PartII
  7. アルカロイドの科学 生物活性を生みだす物質の探索から創薬の実際まで
  8. 金属中心に不斉を持つオレフィンメタセシス触媒
  9. 研究費総額100万円!30年後のミライをつくる若手研究者を募集します【academist】
  10. クネーフェナーゲル ピリジン合成 Knoevenagel Pyridine Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年11月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP