[スポンサーリンク]

chemglossary

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

[スポンサーリンク]

概要

分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなるのは想像に難しくないでしょう.これは光が溶液中の分子に吸収されるために起こる現象です.このとき光の強さがどの程度小さくなるのかを与えてくれるのがブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)です.教科書によってはランベルト-ベールの法則(Lambert-Beer’s law)やベール-ランベルトの法則(Beer-Lambert’s law)と書いてあることもあります.

ブーゲ-ランベルト-ベールの式

まず強度 I0 を持った入射光が,均質な媒質を通り抜け,強度 I の透過光となって出てくる場合を考えます.このときの均質な媒質は,濃度 c [mol/L]の溶液で,光の進む距離(光路長)は b [cm]としておきましょう.

図1.ブーゲ-ランベルト-ベールの法則にて考える設定

続いて,透過度 T というものを定義しておきましょう.透過度とは通過した強度の割合で,以下のように定義されます.光は溶液を通ることで弱くなる,すなわち強度は小さくなるはずです.そのため T は 1 よりも小さくなることに注意しましょう.

さらに,吸光度 A というものを定義すると,これから導く結果が簡単になります.吸光度とは,今定義した透過度 T と同様に,どのくらい光が吸収されたかを表すものです.後々分かるのですが,実は透過度 T は,光路長 b や溶液濃度 c が大きくなるにつれて,指数関数的に減衰します.そのためデータとして扱いにくいのですが,このときに便利になるのが吸光度 A という値です.透過度 T は指数関数的な振る舞いをするので,吸光度 A は透過度 T に対して対数をとってあげれば,扱いやすくなりそうです.そのため吸光度 A は以下のように式として表せます.

ここで,常用対数(底が10)で定義していることに注意してください.また,先ほども述べたように T は 1 よりも小さいため,log Tは負の値になります.しかし,式(2)の右辺にはマイナスがついているので A は正の値になることに注意してください.

ここまで定義した言葉を使って,ブーゲ-ランベルト-ベールの式をみてみます.ただし, ε はモル吸光度係数[L/cm mol]といって,ある物質が特定の波長をどれだけ吸収するかの尺度になるものです.

この式は,吸光度 A は光路長 b と溶液濃度 c に比例することを示しています.次のセクションでは,この式がどのようにして導出されるのかを見てみましょう.

式の導出

ここからは光路長が b で,断面積が S の溶液に光を入射することを考えます.光の強度や溶液の濃度の文字は先ほどと同じものを用います.

まずは,溶液の一部分(微小体積)をとって考えます(図2).

図2.式の導出で考えている設定

この微小体積に含まれる分子数は,アボガドロ定数 NA を用いて以下のように書けます.

分子が独立に光を吸収すると仮定すると,1分子に光を当てたときにどの程度光を吸収しやすいかを表す定数 σ を上の分子数にかけることで,吸収される光は以下のように書けます.

は吸収断面積と呼ばれる値です.吸収断面積については,下に示した参考文献が詳しいので,ぜひ参考にしてください.とりあえずここでは微小体積に含まれる分子数に対応して,どのくらいの光が吸収されるのかを考えていることが分かれば大丈夫です.

ここでいう「分子が独立に光を吸収する」というのは,以下の図のような吸収断面積の考え方をイメージすればよく,それはある分子が別の分子の影にならないという比喩になります.先ほど用いた定数 σ は,1分子に光を当てたときに,どのくらい吸収しやすいかを与えてくれるものでした.そのため,図3右 のように,ある分子が別の分子の影になっている場合には,実際には2分子いるのに,みかけ2分子よりも少なくなってしまいます.このような状況では,分子数から吸収する光を求めるときに,定数 σ をかけるだけという単純な関係ではなくなるため,「分子が独立に光を吸収する」という仮定を置いています.実はブーゲ-ランベルト-ベールの式は,濃度の高い溶液では成り立たなくなりますが,これは吸収断面積の考え方に落とし込んだ時に,分子の影ができると考えることでイメージしやすい説明ができます.

図3.光を独立に吸収するイメージ

次に,先ほどの値を断面積 S で割ることで,単位面積あたりにどのくらい光が吸収されるのかを考えます.それは

となります.

続いて,今考えている微小体積部分を光が通過するときに,その光の強度がどれだけ減るかを考えます.それは先ほど求めた単位面積あたりの吸収量を用いることで,以下のような微分方程式が立てられるはずです.

少し変形すると,

となります.ここで -dI は強度がどれだけ減るかを表します.両辺を入射した時点から透過した直後の間で積分をすると

となります.対数の底をeから10に変換すると,

となります.ここで 1/log e = 2.303 として,

となります.

さらに,ここで吸光度を A = -log (I/I_0) ,モル吸光係数を ε = σN_A/2.303 とおくと

とまとまります.これにてブーゲ-ランベルト-ベールの式が導出されました.

参考文献

関連書籍

[amazonjs asin=”4621301101″ locale=”JP” title=”クリスチャン分析化学 原書7版 II.機器分析編”]

関連リンク

関連記事

  1. アゾ化合物シストランス光異性化
  2. 創薬における中分子
  3. 二光子吸収 two photon absorption
  4. GRE Chemistry
  5. 蓄電池 Rechargeable Battery
  6. 合成後期多様化法 Late-Stage Diversificat…
  7. Process Mass Intensity, PMI(プロセス…
  8. 超臨界流体 Supercritical Fluid

注目情報

ピックアップ記事

  1. 光レドックス触媒と有機分子触媒の協同作用
  2. 位置選択的C-H酸化による1,3-ジオールの合成
  3. 配位子だけじゃない!触媒になるホスフィン
  4. エステル、アミド、ニトリルの金属水素化物による部分還元 Partial Reduction of Esters, Amides nad Nitriles with Metal Hydride
  5. ノーベル化学賞は化学者の手に
  6. AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術
  7. 2021年、ムーアの法則が崩れる?
  8. 専門用語豊富なシソーラス付き辞書!JAICI Science Dictionary
  9. 筑波山
  10. 光触媒ラジカル付加を鍵とするスポンギアンジテルペン型天然物の全合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP