[スポンサーリンク]

chemglossary

酵母還元 Reduction with Yeast

[スポンサーリンク]

ケトンのエナンチオ選択的な還元と言えば、CBS還元Noyori不斉還元などが知られていますが、それらと同様、古典的に知られている酵母還元について扱います。

古典的な例は、ベータケトエステルからベータヒドロキシエステルを得る反応や、βジケトンからβヒドロキシケトンを得る反応などが知られている。その他、単純なケトンの還元にも用いられる。現在では、リコンビナントなADH(Alcohol Dehydrogenase)を用いた反応が主流なため、また、先に述べた合成手法が開発されたため、酵母還元はほとんど用いられないが、歴史的には意義深い反応である。具体的には2000年ごろから大腸菌を用いたADHの大量発現系やGDHなどを用いた補酵素再生系が確立され、数多くのADHアイソフォームや様々なバクテリア由来のADHが単離、合成向けにBiocatalysis分野で使われ始めた。それ故、2000年以前の不斉合成では汎用されていた。

利点

  • 他の酵素や、バクテリアと比べて酵母は安価
  • 特に、ウイルスやバクテリアなどの滅菌処理が不要な環境(一般的な合成化学の研究室)で利用可能
  • 古典的に知られている反応であるため、簡単な化合物の場合、高エナンチオ選択的に目的物が得られる
  • グルコースなどの単純な基質を還元に用いて細胞内のNAD(P)Hの再生系に依存することができ、比較的高価なコファクターなどの添加が不要
  • 細胞の中に酵素やコファクターが存在するので、還元反応を触媒する比較的安定(タンパク質は補酵素が存在しないと不安定となる場合が多い)

欠点

  • 基本的に反応が遅い。
  • バクテリアが死滅していないものを使う場合は、基質がバクテリアの餌となる場合がある。
  • 酵母還元では、ある特定のdehydrogenaseの過剰発現株を用いない限り、酵母内の複数のDehydrogenaseが酵素として機能する。それぞれの酵素がR若しくはS体を優先的に与えることが知られているが、反応に供する化合物の構造や反応温度、基質濃度によってどちらの酵素がより優先的に働くかが決まる。よって、化合物によってはRとSを与える酵素のどちらの基質にもなりえることもあり、エナンチオ選択性が低下する。(この場合は、MVKやAllyl alcohol、thioesterやhalolactoneなどで一方の酵素を阻害することが可能であることもある。)
  • 基質濃度が高くなると、選択性が低下することがある
  • 基質の側鎖がかさ高くなる場合、反応が進行しない場合がある
  • 基質の水への溶解性が低い場合、反応が進行しない若しくはかなり遅くなる場合がある。(DMSOなどの溶媒を添加することも場合によっては可能である。)
  • 反応溶液は通常の有機化学の反応とは異なり、かなり粘性が高く、マグネティックスターラーでは酵母がすりつぶされてしまうことがあるので、撹拌効率などについても考慮し、必要な場合はメカニカルスターラーを用いる必要がある。
  • 臭い。抽出時にエマルジョンが発生し、特に大スケールでの反応は大変な場合がある。(振ったのちにセライトろ過などの方法や、量が多くない場合は、50 mLのファルコンチューブに分注し、遠心する。)

その他

  • 良い選択性が得られない場合、ADH(Alcohol Dehydrogenase,現在では両方のエナンチオマーに高能率で変換可能)などはキットが市販されているので購入して利用することが可能である。野依法やCBS法などを利用する。
  • Lipaseによる光学分割も化合物によっては視野に入れるべき場合もある。(基本的にLipaseはDKRをしないと、半分化合物を捨てるのでアトムエコノミカルでないのが欠点)
  • 選択性が一方の酵素の阻害により向上しない場合は、ホストを変更し、Pichia farinosaをはじめとする微生物を用いる。若しくは、各種ADHを過剰発現させたE coliなどを使うということもできるが、スタンダードな有機化学の研究室ではなかなかセットアップの関係で大腸菌の培養などは難しいので、発酵が可能な生化学系若しくは発酵学、Biosynthesis関連の研究室とのCollaborationを行う必要がある。

関連書籍

[amazonjs asin=”B077SKBNP9″ locale=”JP” title=”Biotransformations in Organic Chemistry: A Textbook (English Edition)”]

Gakushi

投稿者の記事一覧

東京の大学で修士を修了後、インターンを挟み、スイスで博士課程の学生として働いていました。現在オーストリアでポスドクをしています。博士号は取れたものの、ハンドルネームは変えられないようなので、今後もGakushiで通します。

関連記事

  1. 活性ベースタンパク質プロファイリング Activity-Base…
  2. 動的コンビナトリアル化学 Dynamic Combinatori…
  3. メソリティック開裂 mesolytic cleavage
  4. ポットエコノミー Pot Economy
  5. クオラムセンシング Quorum Sensing
  6. メタンハイドレート Methane Hydrate
  7. MOF-5: MOF の火付け役であり MOF の代名詞
  8. 光学分割 / optical resolution

注目情報

ピックアップ記事

  1. 三原色発光するシリコン量子ドットフィルム―太陽光、高温、高湿への高い耐久性は表面構造が鍵―
  2. 「シカゴとオースティンの6年間」 山本研/Krische研より
  3. シスプラチン しすぷらちん cisplatin
  4. 米メルク、シェリング・プラウを4兆円で買収
  5. 分子研オープンキャンパス2022 参加登録受付中!
  6. タンパク質の定量法―ビューレット法 Protein Quantification – Biuret Test
  7. エネルギーの襷を繋ぐオキシムとアルケンの[2+2]光付加環化
  8. 触媒的不斉交差ピナコールカップリングの開発
  9. 元素川柳コンテスト募集中!
  10. リモートワークで結果を出す人、出せない人

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年2月
 12
3456789
10111213141516
17181920212223
242526272829  

注目情報

最新記事

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP