[スポンサーリンク]

chemglossary

酵母還元 Reduction with Yeast

[スポンサーリンク]

ケトンのエナンチオ選択的な還元と言えば、CBS還元Noyori不斉還元などが知られていますが、それらと同様、古典的に知られている酵母還元について扱います。

古典的な例は、ベータケトエステルからベータヒドロキシエステルを得る反応や、βジケトンからβヒドロキシケトンを得る反応などが知られている。その他、単純なケトンの還元にも用いられる。現在では、リコンビナントなADH(Alcohol Dehydrogenase)を用いた反応が主流なため、また、先に述べた合成手法が開発されたため、酵母還元はほとんど用いられないが、歴史的には意義深い反応である。具体的には2000年ごろから大腸菌を用いたADHの大量発現系やGDHなどを用いた補酵素再生系が確立され、数多くのADHアイソフォームや様々なバクテリア由来のADHが単離、合成向けにBiocatalysis分野で使われ始めた。それ故、2000年以前の不斉合成では汎用されていた。

利点

  • 他の酵素や、バクテリアと比べて酵母は安価
  • 特に、ウイルスやバクテリアなどの滅菌処理が不要な環境(一般的な合成化学の研究室)で利用可能
  • 古典的に知られている反応であるため、簡単な化合物の場合、高エナンチオ選択的に目的物が得られる
  • グルコースなどの単純な基質を還元に用いて細胞内のNAD(P)Hの再生系に依存することができ、比較的高価なコファクターなどの添加が不要
  • 細胞の中に酵素やコファクターが存在するので、還元反応を触媒する比較的安定(タンパク質は補酵素が存在しないと不安定となる場合が多い)

欠点

  • 基本的に反応が遅い。
  • バクテリアが死滅していないものを使う場合は、基質がバクテリアの餌となる場合がある。
  • 酵母還元では、ある特定のdehydrogenaseの過剰発現株を用いない限り、酵母内の複数のDehydrogenaseが酵素として機能する。それぞれの酵素がR若しくはS体を優先的に与えることが知られているが、反応に供する化合物の構造や反応温度、基質濃度によってどちらの酵素がより優先的に働くかが決まる。よって、化合物によってはRとSを与える酵素のどちらの基質にもなりえることもあり、エナンチオ選択性が低下する。(この場合は、MVKやAllyl alcohol、thioesterやhalolactoneなどで一方の酵素を阻害することが可能であることもある。)
  • 基質濃度が高くなると、選択性が低下することがある
  • 基質の側鎖がかさ高くなる場合、反応が進行しない場合がある
  • 基質の水への溶解性が低い場合、反応が進行しない若しくはかなり遅くなる場合がある。(DMSOなどの溶媒を添加することも場合によっては可能である。)
  • 反応溶液は通常の有機化学の反応とは異なり、かなり粘性が高く、マグネティックスターラーでは酵母がすりつぶされてしまうことがあるので、撹拌効率などについても考慮し、必要な場合はメカニカルスターラーを用いる必要がある。
  • 臭い。抽出時にエマルジョンが発生し、特に大スケールでの反応は大変な場合がある。(振ったのちにセライトろ過などの方法や、量が多くない場合は、50 mLのファルコンチューブに分注し、遠心する。)

その他

  • 良い選択性が得られない場合、ADH(Alcohol Dehydrogenase,現在では両方のエナンチオマーに高能率で変換可能)などはキットが市販されているので購入して利用することが可能である。野依法やCBS法などを利用する。
  • Lipaseによる光学分割も化合物によっては視野に入れるべき場合もある。(基本的にLipaseはDKRをしないと、半分化合物を捨てるのでアトムエコノミカルでないのが欠点)
  • 選択性が一方の酵素の阻害により向上しない場合は、ホストを変更し、Pichia farinosaをはじめとする微生物を用いる。若しくは、各種ADHを過剰発現させたE coliなどを使うということもできるが、スタンダードな有機化学の研究室ではなかなかセットアップの関係で大腸菌の培養などは難しいので、発酵が可能な生化学系若しくは発酵学、Biosynthesis関連の研究室とのCollaborationを行う必要がある。

関連書籍

Gakushi

投稿者の記事一覧

東京の大学で修士を修了後、インターンを挟み、スイスで博士課程の学生として働いていました。現在オーストリアでポスドクをしています。博士号は取れたものの、ハンドルネームは変えられないようなので、今後もGakushiで通します。

関連記事

  1. Imaging MS イメージングマス
  2. ビオチン標識 biotin label
  3. 薄層クロマトグラフィ / thin-layer chromato…
  4. 深共晶溶媒 Deep Eutectic Solvent
  5. 二水素錯体 Dihydrogen Complexes
  6. 研究のための取引用語
  7. 蓄電池 Rechargeable Battery
  8. 銀イオンクロマトグラフィー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 対称性に着目したモデルに基づいてナノ物質の周期律を発見
  2. チチバビン反応 Chichibabin Reaction
  3. りん酸2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチル : 2-(Methacryloyloxy)ethyl 2-(Trimethylammonio)ethyl Phosphate
  4. ジブロモインジゴ dibromoindigo
  5. ひどい論文を書く技術?
  6. アミロイド線維を触媒に応用する
  7. 三菱化学、酸化エチレン及びグリコールエーテルの価格を値上げ
  8. Nature Catalysis創刊!
  9. カルボニル基の保護 Protection of Carbonyl Group
  10. スポンジシリーズがアップデートされました。

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

導電性ゲル Conducting Gels: 流れない流体に電気を流すお話

「液体のような」相と「固体のような」相、2つの相を持つゲルは様々な分野で用いられています。今回はその…

化学者のためのエレクトロニクス入門④ ~プリント基板業界で活躍する化学メーカー編~

bergです。化学者のためのエレクトロニクス入門と銘打ったこのコーナーも、今回で4回目となりました。…

第103回―「機能性分子をつくる有機金属合成化学」Nicholas Long教授

第103回の海外化学者インタビューは、ニック・ロング教授です。インペリアル・カレッジ・ロンドンの化学…

松原 亮介 Ryosuke Matsubara

松原亮介(まつばら りょうすけ MATSUBARA Ryosuke、1978-)は、日本の化学者であ…

CEMS Topical Meeting Online 超分子ポリマーの進化形

7月31日に理研CEMS主催で超分子ポリマーに関するオンライン講演会が行われるようです。奇しくも第7…

有機合成化学協会誌2020年7月号:APEX反応・テトラアザ[8]サーキュレン・8族金属錯体・フッ素化アミノ酸・フォトアフィニティーラベル

有機合成化学協会が発行する有機合成化学協会誌、2020年7月号がオンライン公開されました。コ…

第102回―「有機薄膜エレクトロニクスと太陽電池の研究」Lynn Loo教授

第102回の海外化学者インタビューは、Lynn Loo教授です。プリンストン大学 化学工学科に所属し…

化学系必見!お土産・グッズ・アイテム特集

bergです。今回は化学系や材料系の学生さんや研究者の方々がつい手に取りたくなりそうなグッズなどを筆…

Chem-Station Twitter

PAGE TOP