[スポンサーリンク]

化学者のつぶやき

DNAに人工塩基対を組み入れる

[スポンサーリンク]

地球上の生命体が遺伝物質としてDNAを使っていること、またその遺伝情報はアデニン(A)、チミン(T)、グアニン(G)、シトシン(C)という僅か4種類の塩基でコードされることは、よく知られた事実です。

このシンプルな遺伝暗号が生み出す20種類のアミノ酸配列(タンパク質)が多種多様な生物機能を担っているわけで、生命の神秘には感動を覚えるほかありません。

しかし現代の化学者は飽くなき野望から、その神秘すら制御しようと考えています。

DNA/RNAに人工塩基対を組み込むアプローチはその一つです。

核酸機能の人工的拡張を目指して

人工塩基対(ここではATCGとは全く骨格の異なるものを指します)の開発研究は、生化学者Alexander Richが1962年に提唱した以下の仮説に端を発しています。

「DNAの塩基の種類を増やすことができれば、DNAの情報や機能を拡張できるはずだ」

仮に第5と第6の人工塩基対をDNAに導入することができれば、伝達パターン(3塩基対コドン)は従来の64通り(4x4x4)から216通り(6x6x6)にまで拡張されます。この拡張コドンに多数の人工アミノ酸を割り当てられれば、新しい人工タンパク質創製にも応用できるはず。またそのようなDNA・RNA自体にも、天然にはない新機能を持たせることができるはず。まさに応用性は無限です。

有機合成で作り上げた人工塩基対をDNAに組み込む研究自体は、実は多く知られています。

例えば東大理学部の塩谷光彦教授は、金属錯体キレートで塩基対を結びつけるアイデアの元、金属原子をDNAに精密配列させる手法を開発しました[1]。新たなナノマテリアル創製を見据えた化学として大変興味深い研究例です。

artificialBP_2.jpg

(画像は文献[1]より引用)

精度良い複製がとにかく大変!

とはいえ塩基対を組む分子を見つけること自体は、実はそこまで難しい話ではありません。人工塩基対のポテンシャルを最大限に活かしつつ、生命化学への応用を考えるならば、避けては通れない大きなハードルは他にあるのです。

それは人工DNAがポリメラーゼで精度高く転写(複製)されなくてはならないということです。

至極当たり前のようでありながら、これを実現しうる人工塩基の開発は並大抵の仕事ではありません。相性問題のために生命システムを上手く活用できないという、人工物に常につきまとう根源とも関わるからです。

生命システムへの応用を視野に入れるには、たいへんな高精度でお互いを見分ける選択性が求められます。なにせ天然DNAの転写エラーは僅かに1/10000 (エラー訂正機能を加味した複製過程ではなんと1/109!)という正確さです。

人工系でこれほどの選択性を為しとげる策はきわめて乏しいものでした。ただただ構造微調整という試行錯誤を繰り返す、泥臭い苦難の先にある世界といえるでしょう。

A-T・C-Gペアの構造を精査することで、「生命系が複製可能な塩基対となるには、どういう特性が重要か」という問題についての洞察がかねてより持たれています。これまでに開発されたPCR複製可能な塩基対の例を以下に示しておきます[2]。水素結合は必ずしも重要ではなく、塩基対同士の形状フィッティング、双極子モーメント、塩基対のスタッキングなどが重要な特性ということが分かってきました。

artificialBP_1.gif

そして長年にわたる格闘のすえ、ついにこの難問を解決した事例、すなわちポリメラーゼによる超高精度複製を行える人工DNA塩基対(Ds-Px:>99.9%/サイクル)が開発されるに至ったのです。

次回はこの応用例を一つ紹介してみたいと思います。

関連文献

  1.  “Programmable self-assembly of metal ions inside artificial DNA duplexes” Shionoya, M. et al. Nat. Nanotech. 2006, 1, 190. doi:10.1038/nnano.2006.141
  2. 「人工塩基対の分子設計」, 平尾一郎、TCIメール [PDF]

関連書籍

[amazonjs asin=”4062574721″ locale=”JP” title=”DNA (上)―二重らせんの発見からヒトゲノム計画まで (ブルーバックス)”][amazonjs asin=”0849314267″ locale=”JP” title=”Artificial DNA: Methods and Applications”]

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 高効率な可視-紫外フォトン・アップコンバージョン材料の開発 ~太…
  2. アメリカ大学院留学:卒業後の進路とインダストリー就活(3)
  3. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  4. ビタミンと金属錯体から合成した人工の酵素
  5. 捏造は研究室の中だけの問題か?
  6. ゲームプレイヤーがNatureの論文をゲット!?
  7. 同位体効果の解釈にはご注意を!
  8. たったひとつのたんぱく質分子のリン酸化を検出する新手法を開発

注目情報

ピックアップ記事

  1. 光とともに変身する有機結晶?! ~紫外光照射で発光色変化しながら相転移する結晶の発見
  2. 相田卓三教授の最終講義をYouTube Live配信!
  3. トクヤマが参入へ/燃料電池部材市場
  4. 同仁化学研、ビオチン標識用キットを発売
  5. リンドラー還元 Lindlar Reduction
  6. シェンヴィ イソニトリル合成 Shenvi Isonitrile Synthesis
  7. リンダウ会議に行ってきた①
  8. ポンコツ博士の海外奮闘録 ケムステ異色連載記
  9. 理想のフェノール合成を目指して~ベンゼンからフェノールへの直接変換
  10. クラリベイト・アナリティクスが「引用栄誉賞2022」を発表!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP