[スポンサーリンク]

化学者のつぶやき

4つの性がある小鳥と超遺伝子

スズメに似た野鳥、ノドジロシトドの体色には白色と黄褐色の2 種類があり、ほとんどのつがいは白– 黄褐である。つまり配偶者選びは、雄か雌かだけでなく体色にも左右されるのだ。このような「2 つ目の性染色体」を持つ生物は珍しく、性染色体進化の謎を解く手掛かりをもたらしてくれる。

タイトル、冒頭の説明文およびトップ画像はシュプリンガー・ネイチャーの出版している日本語の科学まとめ雑誌である「Natureダイジェスト」2月号から(画像:Brian E. Kushner/Moment Open/Gettyのクレジットー「4つの性がある小鳥と超遺伝子」より)。

最新サイエンスを日本語で読めるNatureダイジェストから個人的に興味を持った記事をピックアップして紹介しています。過去の記事は「Nature ダイジェストまとめ」を御覧ください。

雄か雌かだけでなく体色にも左右される「配偶者選び」

小鳥の世界にそんなことってあるの?と、化学とも研究とも全く関係ないですが、大変興味深く読めた記事。そんな変わった「配偶者(つがい)選び」を実践している小鳥は、スズメ目ホオジロ科のノドジロシトド。その小鳥の生態を追い続けたのが生態学者Elaina Tuttle教授(インディアナ州立大学)とその夫のRusty Gonser教授(同大学)です。

出典:インディアナ州立大学

実は、Tuttle教授はごく最近癌で他界されており、本記事は、”4つの性”があるように振る舞うこの小鳥の調査と、彼らの人生の物語でした。少しネタバレしてしまいますが、体色という見た目のファクターでもつがいを選んでいるのは、お互いの内面の良い所どり(もっていない遺伝子をもつ相手をみつける)相手を選ぶため。この配偶システムの背景には「超遺伝子」というものが関わっています。これ以上は記事で読んでもらうことしましょう。

グラフェンでスライム状玩具が圧力センサーに!

スライムに似た粘弾性のポリマー材料にグラフェンを混ぜると、ごく微小な圧力変化をも検知できる、優れた圧力センサーに変身させられることが分かった。

よく知られたおもちゃ+最新科学=新素材になったという驚くべきお話です。

アメリカでよくしられている「シリーパティー」というスライムっぽいシリコーン玩具。それに単層グラフェンを混ぜ込んだ、通称「Gパティー」は、微小な圧力を圧倒的な感度で検知できるセンサーになったそうです[1]。例えば、人の脈拍や小さなクモの繊細な足取りまで感知できるとのこと。

シリーパティーで遊ぶ子供

 

この研究を報告したのはダブリン大学の物理学者Jonathan Coleman教授。Coleman研究室では「身近なものを使って科学する」という伝統があるとのこと。2014年にも料理用のミキサーがグラファイトの粉砕に効果的でグラフェンが得られることを報告しています[2]。記事はこの研究の詳細な内容とColeman教授へのインタビューを紹介しています。

記事とは全くの別件ですが、先月にもスタンフォードの研究者が「ゴムでくるくるまわすおもちゃ」(本名がわからない)が超低価格の遠心分離機として使えることを報告していました(下動画)[3]。身近なものを優秀な科学者はいとも簡単に最新科学に変えてしまう。こんな天才的なアイデア勝負の研究を一度はしてみたいなあと思います。

 

The do-it-yourself centrifuge from Nature Biomedical Engineering on Vimeo.

参考文献

  1. Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Möbius, M. E.; Young, R. J.; Coleman, J. N. Science 2016, 354 1257–1260. DOI: 10.1126/science.aag2879
  2. (Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P.; Higgins, T.; Barwich, S.; May, P.; Puczkarski, P.; Ahmed, I.; Moebius, M.; Pettersson, H.; Long, E.; Coelho, J.; O’Brien, S. E.; McGuire, E. K.; Sanchez, B. M.; Duesberg, G. S.; McEvoy, N.; Pennycook, T. J.; Downing, C.; Crossley, A.; Nicolosi, V.; Coleman, J. N. Nature Materials 2014, 13 , 624–630. DOI: 10.1038/nmat3944
  3. Bhamla, M. S.; Benson, B.; Chai, C.; Katsikis, G.; Johri, A.; Prakash, M. Nat. biomed. eng. 2017, 1, 0009. DOI: 10.1038/s41551-016-0009

研究評価にNIH新指標を取り入れる動き

生物医学分野の研究を支援する各国の助成機関で、米国NIHが開発した新しい指標を導入する動きが広がりつつある。

研究成果の影響力は最終的には歴史が証明してくれる。」それは間違いない話だと思いますが、研究には研究費の獲得が必要となります。研究分野が類似したところならば評価は簡単にできるかもしれませんが、異なる研究分野で争う競争的資金の場合は少し難しくなります。

研究者の業績の中枢に当たる「論文の影響力」。これを評価するためにはいくつの指標があるのは皆さんご存知のことでしょう。例えば、論文誌自体の影響力を示すIF(インパクトファクター)、論文の引用数(citation)が一般的ですね。前者の場合は、IFが低い論文に掲載されないと過小評価されるといった恐れがあり、後者の場合は、1000報引用された論文でも実は、研究人口が多い分野で、実は大したことないかもしれない。といった問題です。

それらを解決するためNIHのポートフィリオ分析局が開発したのが、相対比引用率(Relative Citation Ratio: RCR)という指標。分野にとらわれず論文の影響力を数値として吐き出す指標であり、記事ではこのRCRの現状について述べています。このRCRはPubMedに収録されている論文ならば、iCiteというウェブサイトにPMID(パブメドアイディー)を入力することによって、即座に確認することができます。

RCR値を算出してくれるウェブサイトiCite

RCRの中央値は1で、RCRが2ならば、”普通の”2倍の影響力があるといった感じ。下記のRCR値の分布をみてもらえればわかると思いますが、RCRが5を超えていると、全部の論文の中でも3%以内ぐらいに入っている論文であるため、影響力がある論文であることがわかります。例えばRCRが100を超えるようなことがあれば、分野を超えて歴史に残るような影響力を示した論文であるといえるでしょう。

RCR値の分布 iCiteより出展(https://icite.od.nih.gov/stats)

いくつか試してみましたが、筆者の論文はよいものでRCRが5-7程度でした。総説はあまり関係ないかもしれないですが、PMID 22887739 (約1000報引用)の総説が55.27でした。この指標の難点はPubMed収録の論文しか対象でない、つまり物理学分野は使えないということと、引用数が少なすぎる出たばかりの論文は当然ですが、評価できないということですね。

ともあれウェブサイトで、PMIDを入力すると1秒ほどで結果が表示されるので、ぜひ自分の論文を試してみてはいかがでしょうか。

その他の記事

今月号の無料公開記事は「反水素原子の分光測定に成功」。国家プロジェクトレベルの予算が必要な研究ですが、反物質原子による光の吸収が初めて測定され、基礎物理学の前提となっている理論が検証されたという内容。

その他にも、今月号は2016年に関連する科学の「とっておき年間画像特集2016」もあります。さらに、日本人研究者へのインタビューでは「自閉スペクトラム症研究から「個性」の探求へ」というタイトルで、東北大学の大隅典子先生のインタビューを受けています。「大隅典子の仙台通信」というブログを書いていることでも有名ですね。その他にも最新科学に関する記事が盛り沢山なのでぜひ購読をオススメします。

研究室購読キャンペーン

そういえば、Nature ダイジェスト研究室単位の購読も可能ですが、ちょうどつい先日より「研究室購読キャンペーン」が始まりました。

特典は、1年間の購読料で13ヶ月(購読開始号の前月号をプレゼント)というもの(申し込み:3月31日まで。新規購読お申し込みを対象)。オトクなんで、このキャンペーンを使って私も研究室購読を初めたいと思います。

過去記事はまとめを御覧ください

外部リンク

The following two tabs change content below.
webmaster
Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 【詳説】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  2. 2011年ノーベル化学賞予想ーケムステ版
  3. 有機合成化学協会誌2017年8月号:C-H活性化・アリール化重合…
  4. 有機ナノチューブの新規合成法の開発
  5. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  6. 今年は共有結合100周年ールイスの構造式の物語
  7. 【速報】2012年ノーベル化学賞発表!!「Gタンパク質共役受容体…
  8. 還元された酸化グラフェン(その1)

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 玉尾皓平 Kohei Tamao
  2. ボリレン
  3. カルベンで炭素ー炭素単結合を切る
  4. 第一稀元素化学工業、燃料電池視野に新工場
  5. 有機化学者のラブコメ&ミステリー!?:「ラブ・ケミストリー」
  6. 昭和電工、青色LEDに参入
  7. 産学官若手交流会(さんわか)第19回ワークショップ のご案内
  8. ビール好きならこの論文を読もう!
  9. 中国産ウナギから合成抗菌剤、厚労省が検査義務づけ
  10. 第30回 弱い相互作用を活用した高分子材料創製―Marcus Weck教授

関連商品

注目情報

注目情報

最新記事

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

「アジア発メジャー」狙う大陽日酸、欧州市場に参入

大陽日酸は北米に次ぐ成長が見込める欧州市場に参入を果たす。同業の米プラクスエアが欧州で展開する産業ガ…

典型元素触媒による水素を還元剤とする第一級アミンの還元的アルキル化

第149回のスポットライトリサーチは、大阪大学大学院工学研究科 博士後期課程3年の木下 拓也 (きの…

有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン

化学協会が発行する有機合成化学協会誌、2018年7月号がオンライン公開されました。今月号のキ…

ウィリアム・ロウシュ William R. Roush

ウィリアム・R・ロウシュ(William R. Roush、1952年2月20日(Chula Vis…

Chem-Station Twitter

PAGE TOP