[スポンサーリンク]

スポットライトリサーチ

フルオロホルムを用いた安価なトリフルオロメチル化反応の開発

第158回のスポットライトリサーチは、名古屋工業大学工学部・斉藤 拓弥(さいとう たくや)さんにお願いしました。

斉藤さんの所属する柴田研究室では、含フッ素化合物の新規合成法の開発および機能開拓をメインテーマとして取り組んでいます。今回紹介する研究はその一環であり、産業廃棄物として安価に入手可能なガス(フルオロホルム)を含フッ素化合物合成へ活用可能にしたというものです。Scientific Reports誌、およびプレスリリースとして公表され、今回の紹介に至りました。

“Direct nucleophilic trifluoromethylation of carbonyl compounds by potent greenhouse gas, fluoroform: Improving the reactivity of anionoid trifluoromethyl species in glymes”
Saito, T.; Wang, J.; Tokunaga, E.; Tsuzuki, S.; Shibata, N. Sci. Rep. 2018, 8, 11501. doi:10.1038/s41598-018-29748-1

斉藤さんを現場で指導された柴田哲男 教授からは、以下の様な人物評を頂いています。

斉藤拓弥君は,沼津高専から成績優秀で名工大の3年次に編入し,卒業研究として私の研究室に配属されました。その後,大学院博士前期課程に進学し昨年度に修了しました。研究に対して情熱的でかつ責任感の強い学生で,私どものフロロホルム研究を3年間サポートしてくれました。難しい要求に対しても,怖じ気づくことなく,即答で取り組んでくれた元気いっぱいの学生でした。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

フルオロホルムを用いた求核的トリフルオロメチル化反応の開発に成功しました。
フルオロホルム (HCF3) はフロン23とも呼ばれるフロンの一種です。テフロン製品などフッ素樹脂製造時の副生する温室効果ガスでもあり,その量は毎年約2万トンとも言われています。私たちの研究室では,数年前よりこのHCF3の有効利用を目指し,医薬品や農薬等,液晶材料の化学構造に見られるトリフルオロメチル (CF3) 基を含んだ有機化合物の簡便な合成法の開発研究に取り組んでいます。

私たちの研究室では以前に有機超塩基と呼ばれるホスファゼン塩基を用いてフルオロホルムからトリフルオロメチルアニオンを発生させることに成功し,トリフルオロメチル化反応を実現しました。この手法は2012年に特許申請し,2013年に論文として発表しました。しかし,ホスファゼン塩基が高価であることから,産業として活用するには障壁がありました。今回、反応溶媒にグライム類を用いるだけで、安価なカリウム塩基によってトリフルオロメチル化反応が首尾良く進行することを見つけました。そもそも反応活性種であるトリフルオロメチルアニオンは、カウンターカチオンである金属イオンとの相互作用により、容易にジフルオロカルベンへと分解します (下図a) 。そこで、グライム類が金属イオンを覆い、分解の原因となる金属-フッ素間の相互作用抑えることができれば、トリフルオロメチル化反応が優先されると考えました。検討の結果、グライムのエーテル構造の繰り返しが増えるにつれて反応収率は向上し、対応するトリフルオロメチル化体を収率よく得ることに成功しました (下図b) 。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

グライム類を使用したところです。論文中で述べていますが、本反応はクラウンエーテルやクリプタンドを用いても首尾よく進行します。しかし、産業廃棄物として多量にあるフルオロホルムを活用するためには、安価な手法が不可欠と考えました。先にクラウンエーテル等の手法を見つけていましたが,高価なクラウンエーテル類を使ってしまえば,2012年に特許申請したホスファゼン塩基の手法と同じことになります。そこで類似エーテル系のグライム類を選択しました。検討の中、エーテル鎖が伸びるにつれてトリフルオロメチル化体の収率が向上し、グライム類の効果が見えたときは非常に嬉しかったです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

中間体の存在を支持する情報を集めるのに苦労しました。収率の変化と過去の文献検索から、鍵となる中間体構造を予想しましたが、NMR等の分析では証拠を集めることが出来ませんでした。そこで、計算化学が必要となりました。しかし,計算化学に詳しい先輩が卒業してしまっていたため、解説書を必死に読みながら手探り状態で計算化学による実証実験を行いました。グライムがカリウムカチオンを取り囲むことで、分解の原因となるK-F間の距離が大きく離れることが明らかとなったときは感動しました。

Q4. 将来は化学とどう関わっていきたいですか?

現在は某化学メーカーで研究員をしています。皆さんの役に立てるような化学製品を作り出すことを夢見ています。『化学の力』で、より良い明日を実現できる研究員になれるよう、身の回りの化学に興味を持ちながら研究に向き合っていきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究室の多くの人に支えられながら、本研究をまとめることが出来ました。本当に感謝しています。研究をまとめ上げる時期が卒業と重なってしまいとても苦労しましたが,共同研究者の学生(王建東さん)の協力もあり論文として公開できました。共同研究者はとても大切な存在であり,常に良い関係を築いていくことが大切だと思います。また,私が未経験な計算化学も行ったことも良い経験となりました。未経験なことでも積極的に取り入れることが大切だと思います。

最後になりましたが、柴田哲男教授をはじめ,研究室の仲間にこの場を借りて心より御礼を申し上げます。

最後まで読んでくださり、ありがとうございました。

研究者の略歴

名前:斉藤拓弥
大学:名古屋工業大学大学院工学研究科
学部:生命・応用化学専攻
研究室:柴田研究室 (指導教員:柴田哲男教授)
研究テーマ:フルオロホルムを用いた直接的トリフルオロメチル化反応の開発

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 炭素原子のまわりにベンゼン環をはためかせる
  2. リサーチ・アドミニストレーター (URA) という職業を知ってい…
  3. 稀少な金属種を使わない高効率金属錯体CO2還元光触媒
  4. 含『鉛』芳香族化合物ジリチオプルンボールの合成に成功!①
  5. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成…
  6. BASF International Summer Course…
  7. 遷移金属を用いない脂肪族C-H結合のホウ素化
  8. 含ケイ素四員環 -その1-

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 特許にまつわる初歩的なあれこれ その1
  2. サイエンスアゴラの魅力を聞くー「日本蛋白質構造データバンク」工藤先生
  3. リチウム二次電池における次世代電極材料の開発【終了】
  4. マット・シェア Matthew D. Shair
  5. リチャード・ラーナー Richard Lerner
  6. 水から電子を取り出す実力派触媒の登場!
  7. 亜鉛挿入反応へのLi塩の効果
  8. 【書籍】液晶の歴史
  9. 向山アルドール反応 Mukaiyama Aldol Reaction
  10. <飲む発毛薬>万有製薬に問い合わせ殺到

関連商品

注目情報

注目情報

最新記事

(−)-Salinosporamide Aの全合成

(−)-salinosporamide Aの立体選択的全合成が達成された。アザ-ペイン転位/ヒドロア…

クラウド版オフィススイートを使ってみよう

クラウド版オフィススイートとはOffice onlineやGoogle ドライブなどのことで、ソフト…

NHCが触媒する不斉ヒドロフッ素化

キラルなN–ヘテロ環状カルベン(NHC)を触媒として用いたα,β-不飽和アルデヒドに対する不斉ヒドロ…

ケミカルバイオロジーとバイオケミストリー

突然ですが、質問です。有機化学と無機化学。違いは説明できますか?「生体物質をあつかうものが有…

改正特許法が国会で成立

特許を侵害したと疑われる企業に専門家が立ち入り検査する制度を新設する改正特許法が10日午前の参院本会…

創薬人育成サマースクール2019(関東地区) ~くすりを創る研究の醍醐味を知る!~

動物や臓器に代わる画期的な実験ツールとして注目される生体機能チップ、原薬(API)合成に不可欠なプロ…

Chem-Station Twitter

PAGE TOP