[スポンサーリンク]

E

酵素による光学分割 Enzymatic Optical Resolution

[スポンサーリンク]

概要

リパーゼなどの容易に入手可能な酵素を触媒として用いたアシル化により、アルコールの光学分割が行える。逆にエステルを加水分解する形式でも速度論的光学分割を行える。本稿では、合成化学で最も汎用されているLipaseによる光学分割の解説をおこなう。

アシル化剤としては、不可逆に反応が進むビニルエステル、2-プロペニルエステルなどが用いられる。酵素は濾過などで簡便に除去可能。

基本文献

<review>

  • Kadereit, D.; Waldmann, H. Chem. Rev. 2001, 101, 3367. DOI: 10.1021/cr010146w
  •  La Ferla, B. Monatsh. Chem. 2002, 133, 351.
  •  Pamies, O.; Backvall, J.-E. Chem. Rev. 2003, 103, 3247. DOI: 10.1021/cr020029g
  •  Ghanem, A.; Aboul-Enein, H. Y. Tetrahedron: Asymmetry 2004, 15, 3331. doi:10.1016/j.tetasy.2004.09.019
  •  Garcia-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313. DOI: 10.1021/cr040640a

反応機構

反応例

動的速度論的光学分割を活用した(-)-Rosmarinecineの不斉合成[1]

enzymatic_resol_2.gif

実験手順

ここでは、より、一般に用いられているアシル化モードの解説を行う

  1. まずはラセミ体のアルコール及びアセテートを合成。
  2. ラセミ体の混ざりをChiral-GCまたはChiral-HPLCにて分離を試みる。一度で4つの成分を分離できる条件が見つかれば反応の追跡が簡単になる。
  3. 反応が既知の場合はその酵素を用いればよいが、反応性が分からない場合、研究室にあるだけのLipaseをスクリーニングするとよい。キラルカラムによる反応の追跡により、転換率と選択性を確認しながら、モニタリングを進める。転換率が50%に達し、ほぼS若しくはRアルコールが消費されたら、反応を終了する。
  4. 選択性が確認出来たら、1、化合物が既知の場合、得られたアルコール若しくはアシル化体の旋光度を比較することにより、化合物の確認を行う。2、新規化合物の場合はMosherエステル化などにより未反応のアルコールを(R)-および(S)-MTPAClと反応させ、絶対立体配置を解析する。Mosher法に関して詳しくはこちら
  5. 絶対立体配置が決定でき、アシル化された化合物か、残った方の化合物が必要かが確認出来たら、量上げにより化合物を供給する。スケールアップでのセライトろ過効率が低いことが予想される場合は、セライトを反応溶液に適量入れ、セライトとリパーゼを混ぜ込んでからセライトろ過すると効率的なことがある。

実験のコツ・テクニック

  • ペンタンやヘキサンなどの非極性溶媒とvinyl acetateなどのアシル化剤を用いてアシル化するアシル化モード、水溶液中アシル化物の加水分解を行う加水分解モード、の二つの方法がある。
  • 反応はアルコールの右側と左側の嵩高さの違いが大きいほど、より高い選択性が得られやすい。(高いSelectivity factor = E)
  • 選択性が低い場合、反応温度を下げ長時間反応させるか(反応時間は伸びるので注意)、アシル化モードの場合はアシル化剤の変更を試みる。
  • それでも選択性が満足できない場合は、1、アセチル化モードによる分割を行った場合は加水分解モードでのさらなる分割を試みて光学純度を上げる、2、一旦単離して得られたアルコール若しくは(アシル化物されたものを加水分解により得たアルコール)を再度酵素的な光学分割に供する、などの方法がある。
  • Kinetic resolutionはキラルアルコールを作る方法論の一つであり、もしうまくいかない場合は、CBS還元などエナンチオ選択的な反応により不斉点を構築することも考慮に入れるべきである。
  • Kinetic resolutionでは多くの場合、半分の基質を捨てる羽目になるためアトムエコノミカルではない。そのため、DKRなどが盛んに研究されている。

詳細

  • Lipaseによる、エステル化反応及び加水分解反応は基本的に可逆プロセスである。そのため、一般的にはvinyl acetateやisopropenyl acetate、1-ethoxyvinyl acetate(若しくはacid anhydride)などの化合物が用いられる。vinyl acetateはホルムアルデヒドを副生、isopropenyl esterはアセトンを、1-ethoxyvinyl acetateは酢酸エチルを副生する。酸無水物を用いた場合は反応の経過とともにpHが低下するので、DTBPなどの添加が必要となる場合があるなどの欠点も存在する。
  • Immobilized enzymeは副生する、ホルムアルデヒド(vinyl acetateを用いた場合)と、酵素のLys残基が反応しにくいなどの特徴を備えるものもあり、安定性が比較的高いとされる。
  • 同じ酵素で優先的に認識されるのは同じエナンチオマーである。(すなわち、アシル化モードで光学分割がイマイチだった場合は同じ酵素を用いて加水分解モードの反応を行えば光学純度の向上が期待できる、という話である。)
  • 一級水酸基の光学分割にはPPLやPseudomonas sp.のLipaseを用いるとよい結果が得られやすいのに対し、2級水酸基のresolutionにはCandida antarctica B(CAL)やPseudomonas sp.(PSL)が向くとされている。一般的な基質の大きさとリパーゼの種類は、bulky substrate pocket > Aspergillus sp.  > Candida rugosa > Candida antarctica B > Mucor sp. = Humicola lanuginosa > Pseudomonas sp. = PPL > narrow substrate pocketの順である。
  • 定量的ではないにしろ、アシルドナーの供与能と反応速度は正の相関があり、trichloroethyl acetate < isopropenyl acetate < vinyl butanoate = vinyl octanoate = vinyl acetateとなっている。

参考文献

[1] Akai, S.; Tanimoto, K.; Kanao, Y.; Omura, S.; Kita, Y. Chem. Commun. 2005, 2369. DOI: 10.1039/B419426H

関連反応

関連書籍

[amazonjs asin=”3527325476″ locale=”JP” title=”Enzyme Catalysis in Organic Synthesis”] [amazonjs asin=”3642173926″ locale=”JP” title=”Biotransformations in Organic Chemistry: A Textbook”]

外部リンク

2019.07.02 大幅に加筆修正(Gakushi)変更後、一部修正

関連記事

  1. ブレデレック試薬 Bredereck’s Reage…
  2. 隣接基関与 Neighboring Group Particip…
  3. エノラートの酸化的カップリング Oxidative Coupli…
  4. 芳香族メタ光環化付加 Aromatic meta-photoc…
  5. ベックマン転位 Beckmann Rearrangement
  6. ボラン錯体 Borane Complex (BH3・L)
  7. ハートウィグ・宮浦C-Hホウ素化反応 Hartwig-Miyau…
  8. クノール キノリン合成 Knorr Quinoline Synt…

注目情報

ピックアップ記事

  1. キラルアミンを一度に判別!高分子認識能を有するPd錯体
  2. フラーレンが水素化触媒に???
  3. 化学実験系YouTuber
  4. 第24回「アルキル-πエンジニアリングによる分子材料創成」中西尚志 博士
  5. エノールエーテルからα-三級ジアルキルエーテルをつくる
  6. ジブロモインジゴ dibromoindigo
  7. 100兆分の1秒の極短パルスレーザー光で「化学結合誕生の瞬間」を捉える
  8. 【サステナブルなものづくり】 マイクロ波の使い方セミナー 〜実験例・実証設備などを公開〜
  9. 高選択的なアルカンC–H酸化触媒の開発
  10. ナノクリスタルによるロタキサン~「モファキサン」の合成に成功~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP