[スポンサーリンク]

E

酵素による光学分割 Enzymatic Optical Resolution

[スポンサーリンク]

概要

リパーゼなどの容易に入手可能な酵素を触媒として用いたアシル化により、アルコールの光学分割が行える。逆にエステルを加水分解する形式でも速度論的光学分割を行える。本稿では、合成化学で最も汎用されているLipaseによる光学分割の解説をおこなう。

アシル化剤としては、不可逆に反応が進むビニルエステル、2-プロペニルエステルなどが用いられる。酵素は濾過などで簡便に除去可能。

基本文献

<review>

  • Kadereit, D.; Waldmann, H. Chem. Rev. 2001, 101, 3367. DOI: 10.1021/cr010146w
  •  La Ferla, B. Monatsh. Chem. 2002, 133, 351.
  •  Pamies, O.; Backvall, J.-E. Chem. Rev. 2003, 103, 3247. DOI: 10.1021/cr020029g
  •  Ghanem, A.; Aboul-Enein, H. Y. Tetrahedron: Asymmetry 2004, 15, 3331. doi:10.1016/j.tetasy.2004.09.019
  •  Garcia-Urdiales, E.; Alfonso, I.; Gotor, V. Chem. Rev. 2005, 105, 313. DOI: 10.1021/cr040640a

反応機構

反応例

動的速度論的光学分割を活用した(-)-Rosmarinecineの不斉合成[1]

enzymatic_resol_2.gif

実験手順

ここでは、より、一般に用いられているアシル化モードの解説を行う

  1. まずはラセミ体のアルコール及びアセテートを合成。
  2. ラセミ体の混ざりをChiral-GCまたはChiral-HPLCにて分離を試みる。一度で4つの成分を分離できる条件が見つかれば反応の追跡が簡単になる。
  3. 反応が既知の場合はその酵素を用いればよいが、反応性が分からない場合、研究室にあるだけのLipaseをスクリーニングするとよい。キラルカラムによる反応の追跡により、転換率と選択性を確認しながら、モニタリングを進める。転換率が50%に達し、ほぼS若しくはRアルコールが消費されたら、反応を終了する。
  4. 選択性が確認出来たら、1、化合物が既知の場合、得られたアルコール若しくはアシル化体の旋光度を比較することにより、化合物の確認を行う。2、新規化合物の場合はMosherエステル化などにより未反応のアルコールを(R)-および(S)-MTPAClと反応させ、絶対立体配置を解析する。Mosher法に関して詳しくはこちら
  5. 絶対立体配置が決定でき、アシル化された化合物か、残った方の化合物が必要かが確認出来たら、量上げにより化合物を供給する。スケールアップでのセライトろ過効率が低いことが予想される場合は、セライトを反応溶液に適量入れ、セライトとリパーゼを混ぜ込んでからセライトろ過すると効率的なことがある。

実験のコツ・テクニック

  • ペンタンやヘキサンなどの非極性溶媒とvinyl acetateなどのアシル化剤を用いてアシル化するアシル化モード、水溶液中アシル化物の加水分解を行う加水分解モード、の二つの方法がある。
  • 反応はアルコールの右側と左側の嵩高さの違いが大きいほど、より高い選択性が得られやすい。(高いSelectivity factor = E)
  • 選択性が低い場合、反応温度を下げ長時間反応させるか(反応時間は伸びるので注意)、アシル化モードの場合はアシル化剤の変更を試みる。
  • それでも選択性が満足できない場合は、1、アセチル化モードによる分割を行った場合は加水分解モードでのさらなる分割を試みて光学純度を上げる、2、一旦単離して得られたアルコール若しくは(アシル化物されたものを加水分解により得たアルコール)を再度酵素的な光学分割に供する、などの方法がある。
  • Kinetic resolutionはキラルアルコールを作る方法論の一つであり、もしうまくいかない場合は、CBS還元などエナンチオ選択的な反応により不斉点を構築することも考慮に入れるべきである。
  • Kinetic resolutionでは多くの場合、半分の基質を捨てる羽目になるためアトムエコノミカルではない。そのため、DKRなどが盛んに研究されている。

詳細

  • Lipaseによる、エステル化反応及び加水分解反応は基本的に可逆プロセスである。そのため、一般的にはvinyl acetateやisopropenyl acetate、1-ethoxyvinyl acetate(若しくはacid anhydride)などの化合物が用いられる。vinyl acetateはホルムアルデヒドを副生、isopropenyl esterはアセトンを、1-ethoxyvinyl acetateは酢酸エチルを副生する。酸無水物を用いた場合は反応の経過とともにpHが低下するので、DTBPなどの添加が必要となる場合があるなどの欠点も存在する。
  • Immobilized enzymeは副生する、ホルムアルデヒド(vinyl acetateを用いた場合)と、酵素のLys残基が反応しにくいなどの特徴を備えるものもあり、安定性が比較的高いとされる。
  • 同じ酵素で優先的に認識されるのは同じエナンチオマーである。(すなわち、アシル化モードで光学分割がイマイチだった場合は同じ酵素を用いて加水分解モードの反応を行えば光学純度の向上が期待できる、という話である。)
  • 一級水酸基の光学分割にはPPLやPseudomonas sp.のLipaseを用いるとよい結果が得られやすいのに対し、2級水酸基のresolutionにはCandida antarctica B(CAL)やPseudomonas sp.(PSL)が向くとされている。一般的な基質の大きさとリパーゼの種類は、bulky substrate pocket > Aspergillus sp.  > Candida rugosa > Candida antarctica B > Mucor sp. = Humicola lanuginosa > Pseudomonas sp. = PPL > narrow substrate pocketの順である。
  • 定量的ではないにしろ、アシルドナーの供与能と反応速度は正の相関があり、trichloroethyl acetate < isopropenyl acetate < vinyl butanoate = vinyl octanoate = vinyl acetateとなっている。

参考文献

[1] Akai, S.; Tanimoto, K.; Kanao, Y.; Omura, S.; Kita, Y. Chem. Commun. 2005, 2369. DOI: 10.1039/B419426H

関連反応

関連書籍

[amazonjs asin=”3527325476″ locale=”JP” title=”Enzyme Catalysis in Organic Synthesis”] [amazonjs asin=”3642173926″ locale=”JP” title=”Biotransformations in Organic Chemistry: A Textbook”]

外部リンク

2019.07.02 大幅に加筆修正(Gakushi)変更後、一部修正

関連記事

  1. カルボニル基の保護 Protection of Carbonyl…
  2. ロビンソン環形成反応 Robinson Annulation
  3. メーヤワイン アリール化反応 Meerwein Arylatio…
  4. 熊田・玉尾・コリューカップリング Kumada-Tamao-Co…
  5. ハネシアン・ヒュラー反応 Hanessian-Hullar Re…
  6. 水素化ホウ素亜鉛 Zinc Bodohydride
  7. プメラー転位 Pummerer Rearrangement
  8. テッベ試薬 Tebbe Reagent

注目情報

ピックアップ記事

  1. アルカリ金属でメトキシアレーンを求核的にアミノ化する
  2. 第43回「はっ!」と気づいたときの喜びを味わい続けたい – 高橋 雅英 教授
  3. 宇宙なう:結晶生成サービス「Kirara」を利用してみた
  4. クレメンゼン還元 Clemmensen Reduction
  5. ノバルティス、後発薬品世界最大手に・米独社を買収
  6. 触媒的C-H酸化反応 Catalytic C-H Oxidation
  7. ノーベル街道起点
  8. 【第14回Vシンポ特別企画】講師紹介:酒田 陽子 先生
  9. 化学研究ライフハック:Twitter活用のためのテクニック
  10. フィッシャー オキサゾール合成 Fischer Oxazole Synthesis

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP