[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (1)

[スポンサーリンク]

アルドール反応(Aldol reaction)を御存じだろうか?

歴史、原理、応用、有用性、方法論・・・諸々の観点から、有機合成化学において最重要視されてきた化学反応の一つであり、「有機化学反応の王道」とも呼ばれる存在である。

本シリーズでは、アルドール反応の特徴、歴史的マイルストーンとなった研究、最近の動向などについて、順を追って解説してみたい。

まず第1回目は、アルドール反応とは何か?という基本事項から。

アルドール反応とは?

アルドール反応を知らない人の為に、まずは簡潔に説明してみよう。 アルドール反応の定義は以下の通りである。

【α水素をもつカルボニル化合物から発生したエノラート(エノール)がもう一つのカルボニル化合物へ求核付加し、β-ヒドロキシカルボニル化合物を与える反応】

図1:アルドール反応

この一つの反応だけで、過去から現在にわたり膨大な研究が行われている。なぜ、こうまで化学者の興味を惹き、また重宝されているのだろうか? 概して、以下の4つの価値がその理由とされている。

① 新しい炭素-炭素結合を作ることが出来る
有機化合物の基本骨格を、二つのフラグメントを結合する形で繋げ、より複雑なものに出来る。

② 官能基を豊富に持った生成物が得られる 
あとあと、好きな構造に変換することが簡単。

③ 連続する不斉炭素を作れる

不斉合成法へと展開できれば反応価値を向上でき、生物活性物質の精密合成にも有用となる。

原子効率の高い反応

ゴミを少なく出来る、環境に優しい反応。

この特徴ゆえに、複雑化合物を効率合成する必要がある医薬品産業などに、とりわけ需要の高い反応とされている。

古典的条件とその難点

アルドール反応そのものは、Charles Adolphe WurtzおよびAlexander Borodinらによって、19世紀後半に独立に発見された。

当初の古典的条件は、硫酸などのブレンステッド酸、もしくはプロトン性溶媒+ナトリウムエトキシドなどといった、ブレンステッド塩基を用いて進行させるものだった(図)。

図2:古典的アルドール反応のメカニズム

図:古典的アルドール反応のメカニズム

これは、エノラート(エノール)を発生させる条件としては、かなり強力なものである。それゆえ、コントロールがとても難しいという欠点があった。もっと役立つ反応にするには、以下の3点を解決する必要があった。

① 化学選択性の制御 → 沢山の副生成物を減らし、欲しいものだけを合成したい
② 可逆・平衡条件の回避 → 化合物によっては、収率が上がらないのを何とかしたい
③ 交差反応の促進 → 同種縮合を抑えることで、反応に一般性・多様性をもたせたい

この問題解決にむけ、下記年表に示すとおり、現在に至るまで数え切れないほどの研究が為されることになる。その発展の歴史については、次回から順を追って述べてみたいと思う。

図1:アルドール反応のマイルストーンとなった研究年表(MacMillan研セミナー資料より引用)

年表:アルドール反応のマイルストーンとなった研究一覧(MacMillan研セミナー資料より引用)

 

(※本稿は以前公開していた記事に現代事情を加筆・修正したうえで、ブログに移行したものです)
(2001.6.4 執筆 by ブレビコミン、2015. 9.19 加筆修正 by cosine)

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 人工光合成の方法で有機合成反応を実現
  2. 【食品・飲料業界の方向け】 マイクロ波がもたらすプロセス効率化と…
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑨
  4. 昆虫細胞はなぜ室温で接着するのだろう?
  5. イミンを求核剤として反応させる触媒反応
  6. 2002年ノーベル化学賞『生体高分子の画期的分析手法の開発』
  7. データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計…
  8. 高分子を”見る” その2

注目情報

ピックアップ記事

  1. 光で形を変える結晶
  2. ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―
  3. スペクトルから化合物を検索「KnowItAll」
  4. HTEで一挙に検討!ペプチドを基盤とした不斉触媒開発
  5. 日本学士院賞・受賞化学者一覧
  6. IBX酸化 IBX Oxidation
  7. 専門用語(科学英単語)の発音
  8. 吉野彰氏がリチウムイオン電池技術の発明・改良で欧州発明家賞にノミネート
  9. 決算短信~日本触媒と三洋化成の合併に関連して~
  10. 夏休みの自由研究に最適!~家庭でできる化学実験7選~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年9月
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

最新記事

リサイクル・アップサイクルが可能な植物由来の可分解性高分子の開発

第694回のスポットライトリサーチは、横浜国立大学大学院理工学府(跡部・信田研究室)卒業生の瀬古達矢…

第24回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP